Ocular blood flow measurements in healthy human myopic eyes

Alexandra Benavente-Pérez, Sarah Hosking, Nicola S. Logan, David C. Broadway

Research output: Contribution to journalArticlepeer-review

Abstract

Background. To evaluate the haemodynamic features of young healthy myopes and emmetropes, in order to ascertain the perfusion profile of human myopia and its relationship with axial length prior to reaching a degenerative state.
Methods The retrobulbar, microretinal and pulsatile ocular blood flow (POBF) of one eye of each of twenty-two high myopes (N=22, mean spherical equivalent (MSE) =-5.00D), low myopes (N=22, MSE-1.00 to-4.50D) and emmetropes
(N=22, MSE±0.50D) was analyzed using color Doppler Imaging, Heidelberg retinal flowmetry and ocular blood flow analyser (OBF) respectively. Intraocular pressure, axial length (AL), systemic blood pressure, and body mass index
were measured.
Results. When compared to the emmetropes and low myopes, the AL was greater in high myopia (p<0.0001). High myopes showed higher central retinal artery resistance index (CRA RI) (p=0.004), higher peak systolic to end
diastolic velocities ratio (CRA ratio) and lower end diastolic velocity (CRA EDv) compared to low myopes (p=0.014, p=0.037). Compared to emmetropes, high
myopes showed lower OBFamplitude (OBFa) (p=0.016). The POBF correlated significantly with the systolic and diastolic blood velocities of the CRA (p=0.016, p=0.036). MSE and AL correlated negatively with OBFa (p=0.03, p=0.003), OBF volume (p=0.02, p<0.001), POBF (p=0.01, p<0.001) and positively with CRA RI (p=0.007, p=0.05).
Conclusion. High myopes exhibited significantly reduced pulse amplitude and CRA blood velocity, the first of which may be due to an OBF measurement artefact or real decreased ocular blood flow pulsatility. Axial length and
refractive error correlated moderately with the ocular pulse and with the resistance index of the CRA, which in turn correlated amongst themselves. It is hypothesized that the compromised pulsatile and CRA haemodynamics observed
in young healthy myopes is an early feature of the decrease in ocular blood flow reported in pathological myopia. Such vascular features would increase the susceptibility for vascular and age-related eye diseases.
Original languageEnglish
Pages (from-to)1587-1594
Number of pages8
JournalGraefe's Archive for Clinical and Experimental Ophthalmology
Volume248
Issue number11
Early online date26 May 2010
DOIs
Publication statusPublished - Nov 2010

Keywords

  • biometry
  • blood flow velocity
  • blood pressure
  • body mass index
  • ciliary arteries
  • emmetropia
  • female
  • humans
  • intraocular pressure
  • male
  • myopia
  • ophthalmic artery
  • pulsatile flow
  • regional blood flow
  • retinal artery
  • ultrasonography
  • young adult

Fingerprint

Dive into the research topics of 'Ocular blood flow measurements in healthy human myopic eyes'. Together they form a unique fingerprint.

Cite this