On the exploitation of differential aerodynamic lift and drag as a means to control satellite formation flight

C. Traub, F. Romano, T. Binder, A. Boxberger, G. H. Herdrich, S. Fasoulas, P. C. E. Roberts, K. Smith, S. Edmondson, S. Haigh, N. H. Crisp, V. T. A. Oiko, R. Lyons, S. D. Worrall, S. Livadiotti, J. Becedas, G. González, R. M. Dominguez, D. González, L. GhizoniV. Jungnell, K. Bay, J. Morsbøl, D. Garcia-almiñana, S. Rodriguez-donaire, M. Sureda, D. Kataria, R. Outlaw, R. Villain, J. S. Perez, A. Conte, B. Belkouchi, A. Schwalber, B. Heißerer

Research output: Contribution to journalArticle

Abstract

For a satellite formation to maintain its intended design despite present perturbations (formation keeping), to change the formation design (reconfiguration) or to perform a rendezvous maneuver, control forces need to be generated. To do so, chemical and/or electric thrusters are currently the methods of choice. However, their utilization has detrimental effects on small satellites’ limited mass, volume and power budgets. Since the mid-80s, the potential of using differential drag as a means of propellant-less source of control for satellite formation flight is actively researched. This method consists of varying the aerodynamic drag experienced by different spacecraft, thus generating differential accelerations between them. Its main disadvantage, that its controllability is mainly limited to the in-plain relative motion, can be overcome using differential lift as a means to control the out-of-plane motion. Due to its promising benefits, a variety of studies from researchers around the world have enhanced the state-of-the-art over the past decades which results in a multitude of available literature. In this paper, an extensive literature review of the efforts which led to the current state-of-the-art of different lift and drag-based satellite formation control is presented. Based on the insights gained during the review process, key knowledge gaps that need to be addressed in the field of differential lift to enhance the current state-of-the-art are revealed and discussed. In closer detail, the interdependence between the feasibility domain/the maneuver time and increased differential lift forces achieved using advanced satellite surface materials promoting quasi-specular or specular reflection, as currently being developed in the course of the DISCOVERER project, is discussed.
Original languageEnglish
Number of pages18
JournalCEAS Space Journal
Early online date27 May 2019
DOIs
Publication statusE-pub ahead of print - 27 May 2019

Fingerprint

satellite control
aerodynamic drag
exploitation
aerodynamics
drag
Drag
Aerodynamics
flight
Satellites
maneuvers
satellite surfaces
Aerodynamic drag
rendezvous
specular reflection
controllability
Force control
propellants
Propellants
Controllability
plains

Cite this

Traub, C., Romano, F., Binder, T., Boxberger, A., Herdrich, G. H., Fasoulas, S., ... Heißerer, B. (2019). On the exploitation of differential aerodynamic lift and drag as a means to control satellite formation flight. CEAS Space Journal. https://doi.org/10.1007/s12567-019-00254-y
Traub, C. ; Romano, F. ; Binder, T. ; Boxberger, A. ; Herdrich, G. H. ; Fasoulas, S. ; Roberts, P. C. E. ; Smith, K. ; Edmondson, S. ; Haigh, S. ; Crisp, N. H. ; Oiko, V. T. A. ; Lyons, R. ; Worrall, S. D. ; Livadiotti, S. ; Becedas, J. ; González, G. ; Dominguez, R. M. ; González, D. ; Ghizoni, L. ; Jungnell, V. ; Bay, K. ; Morsbøl, J. ; Garcia-almiñana, D. ; Rodriguez-donaire, S. ; Sureda, M. ; Kataria, D. ; Outlaw, R. ; Villain, R. ; Perez, J. S. ; Conte, A. ; Belkouchi, B. ; Schwalber, A. ; Heißerer, B. / On the exploitation of differential aerodynamic lift and drag as a means to control satellite formation flight. In: CEAS Space Journal. 2019.
@article{287a49a1e055421fb2d0e4331012d50f,
title = "On the exploitation of differential aerodynamic lift and drag as a means to control satellite formation flight",
abstract = "For a satellite formation to maintain its intended design despite present perturbations (formation keeping), to change the formation design (reconfiguration) or to perform a rendezvous maneuver, control forces need to be generated. To do so, chemical and/or electric thrusters are currently the methods of choice. However, their utilization has detrimental effects on small satellites’ limited mass, volume and power budgets. Since the mid-80s, the potential of using differential drag as a means of propellant-less source of control for satellite formation flight is actively researched. This method consists of varying the aerodynamic drag experienced by different spacecraft, thus generating differential accelerations between them. Its main disadvantage, that its controllability is mainly limited to the in-plain relative motion, can be overcome using differential lift as a means to control the out-of-plane motion. Due to its promising benefits, a variety of studies from researchers around the world have enhanced the state-of-the-art over the past decades which results in a multitude of available literature. In this paper, an extensive literature review of the efforts which led to the current state-of-the-art of different lift and drag-based satellite formation control is presented. Based on the insights gained during the review process, key knowledge gaps that need to be addressed in the field of differential lift to enhance the current state-of-the-art are revealed and discussed. In closer detail, the interdependence between the feasibility domain/the maneuver time and increased differential lift forces achieved using advanced satellite surface materials promoting quasi-specular or specular reflection, as currently being developed in the course of the DISCOVERER project, is discussed.",
author = "C. Traub and F. Romano and T. Binder and A. Boxberger and Herdrich, {G. H.} and S. Fasoulas and Roberts, {P. C. E.} and K. Smith and S. Edmondson and S. Haigh and Crisp, {N. H.} and Oiko, {V. T. A.} and R. Lyons and Worrall, {S. D.} and S. Livadiotti and J. Becedas and G. Gonz{\'a}lez and Dominguez, {R. M.} and D. Gonz{\'a}lez and L. Ghizoni and V. Jungnell and K. Bay and J. Morsb{\o}l and D. Garcia-almi{\~n}ana and S. Rodriguez-donaire and M. Sureda and D. Kataria and R. Outlaw and R. Villain and Perez, {J. S.} and A. Conte and B. Belkouchi and A. Schwalber and B. Hei{\ss}erer",
year = "2019",
month = "5",
day = "27",
doi = "10.1007/s12567-019-00254-y",
language = "English",

}

Traub, C, Romano, F, Binder, T, Boxberger, A, Herdrich, GH, Fasoulas, S, Roberts, PCE, Smith, K, Edmondson, S, Haigh, S, Crisp, NH, Oiko, VTA, Lyons, R, Worrall, SD, Livadiotti, S, Becedas, J, González, G, Dominguez, RM, González, D, Ghizoni, L, Jungnell, V, Bay, K, Morsbøl, J, Garcia-almiñana, D, Rodriguez-donaire, S, Sureda, M, Kataria, D, Outlaw, R, Villain, R, Perez, JS, Conte, A, Belkouchi, B, Schwalber, A & Heißerer, B 2019, 'On the exploitation of differential aerodynamic lift and drag as a means to control satellite formation flight', CEAS Space Journal. https://doi.org/10.1007/s12567-019-00254-y

On the exploitation of differential aerodynamic lift and drag as a means to control satellite formation flight. / Traub, C.; Romano, F.; Binder, T.; Boxberger, A.; Herdrich, G. H.; Fasoulas, S.; Roberts, P. C. E.; Smith, K.; Edmondson, S.; Haigh, S.; Crisp, N. H.; Oiko, V. T. A.; Lyons, R.; Worrall, S. D.; Livadiotti, S.; Becedas, J.; González, G.; Dominguez, R. M.; González, D.; Ghizoni, L.; Jungnell, V.; Bay, K.; Morsbøl, J.; Garcia-almiñana, D.; Rodriguez-donaire, S.; Sureda, M.; Kataria, D.; Outlaw, R.; Villain, R.; Perez, J. S.; Conte, A.; Belkouchi, B.; Schwalber, A.; Heißerer, B.

In: CEAS Space Journal, 27.05.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - On the exploitation of differential aerodynamic lift and drag as a means to control satellite formation flight

AU - Traub, C.

AU - Romano, F.

AU - Binder, T.

AU - Boxberger, A.

AU - Herdrich, G. H.

AU - Fasoulas, S.

AU - Roberts, P. C. E.

AU - Smith, K.

AU - Edmondson, S.

AU - Haigh, S.

AU - Crisp, N. H.

AU - Oiko, V. T. A.

AU - Lyons, R.

AU - Worrall, S. D.

AU - Livadiotti, S.

AU - Becedas, J.

AU - González, G.

AU - Dominguez, R. M.

AU - González, D.

AU - Ghizoni, L.

AU - Jungnell, V.

AU - Bay, K.

AU - Morsbøl, J.

AU - Garcia-almiñana, D.

AU - Rodriguez-donaire, S.

AU - Sureda, M.

AU - Kataria, D.

AU - Outlaw, R.

AU - Villain, R.

AU - Perez, J. S.

AU - Conte, A.

AU - Belkouchi, B.

AU - Schwalber, A.

AU - Heißerer, B.

PY - 2019/5/27

Y1 - 2019/5/27

N2 - For a satellite formation to maintain its intended design despite present perturbations (formation keeping), to change the formation design (reconfiguration) or to perform a rendezvous maneuver, control forces need to be generated. To do so, chemical and/or electric thrusters are currently the methods of choice. However, their utilization has detrimental effects on small satellites’ limited mass, volume and power budgets. Since the mid-80s, the potential of using differential drag as a means of propellant-less source of control for satellite formation flight is actively researched. This method consists of varying the aerodynamic drag experienced by different spacecraft, thus generating differential accelerations between them. Its main disadvantage, that its controllability is mainly limited to the in-plain relative motion, can be overcome using differential lift as a means to control the out-of-plane motion. Due to its promising benefits, a variety of studies from researchers around the world have enhanced the state-of-the-art over the past decades which results in a multitude of available literature. In this paper, an extensive literature review of the efforts which led to the current state-of-the-art of different lift and drag-based satellite formation control is presented. Based on the insights gained during the review process, key knowledge gaps that need to be addressed in the field of differential lift to enhance the current state-of-the-art are revealed and discussed. In closer detail, the interdependence between the feasibility domain/the maneuver time and increased differential lift forces achieved using advanced satellite surface materials promoting quasi-specular or specular reflection, as currently being developed in the course of the DISCOVERER project, is discussed.

AB - For a satellite formation to maintain its intended design despite present perturbations (formation keeping), to change the formation design (reconfiguration) or to perform a rendezvous maneuver, control forces need to be generated. To do so, chemical and/or electric thrusters are currently the methods of choice. However, their utilization has detrimental effects on small satellites’ limited mass, volume and power budgets. Since the mid-80s, the potential of using differential drag as a means of propellant-less source of control for satellite formation flight is actively researched. This method consists of varying the aerodynamic drag experienced by different spacecraft, thus generating differential accelerations between them. Its main disadvantage, that its controllability is mainly limited to the in-plain relative motion, can be overcome using differential lift as a means to control the out-of-plane motion. Due to its promising benefits, a variety of studies from researchers around the world have enhanced the state-of-the-art over the past decades which results in a multitude of available literature. In this paper, an extensive literature review of the efforts which led to the current state-of-the-art of different lift and drag-based satellite formation control is presented. Based on the insights gained during the review process, key knowledge gaps that need to be addressed in the field of differential lift to enhance the current state-of-the-art are revealed and discussed. In closer detail, the interdependence between the feasibility domain/the maneuver time and increased differential lift forces achieved using advanced satellite surface materials promoting quasi-specular or specular reflection, as currently being developed in the course of the DISCOVERER project, is discussed.

UR - http://link.springer.com/10.1007/s12567-019-00254-y

U2 - 10.1007/s12567-019-00254-y

DO - 10.1007/s12567-019-00254-y

M3 - Article

ER -

Traub C, Romano F, Binder T, Boxberger A, Herdrich GH, Fasoulas S et al. On the exploitation of differential aerodynamic lift and drag as a means to control satellite formation flight. CEAS Space Journal. 2019 May 27. https://doi.org/10.1007/s12567-019-00254-y