Oxidised LDL-lipids alter redox ratio, lipid raft formation and increase amyloid beta production by SHSY-5Y cells

I.K.I. Dias, J. Mistry, M. Tarzyluck, E.J. Hill, S.J. Bennett, M.C. Polidori, G.Y.H. Lip, H.R. Griffiths

Research output: Contribution to journalConference abstractpeer-review


Elevated cholesterol in mid-life has been associated with increased risk of dementia in later life. We have previously shown that low density lipoprotein (LDL) is more oxidised in the plasma of dementia patients although total cholesterol levels remained unchanged [1]. We have investigated the hypothesis that amyloid beta production and neurodegeneration can be driven by oxidised lipids derived from LDL following the loss of blood brain barrier integrity with ageing. Therefore, we have investigated amyloid beta formation in SHSY5Y cells treated with LDL, minimally modified (ox) LDL, and lipids extracted from both forms of LDL. LDL-treated SHSY-5Y cell viability was not significantly decreased with up to 8 μg LDL/2 × 104 cells compared to untreated cells. However, 8 μg oxLDL protein/2 × 104 cells decreased the cell viability significantly by 33.7% (P < 0.05). A more significant decrease in cell viability was observed when treating cells with extracted lipids from 8 μg of LDL (by 32.7%; P < 0.01) and oxLDL (by 41%; P < 0.01). In parallel, the ratio of reduced to oxidised GSH was decreased; GSH concentrations were significantly decreased following treatment with 0.8 μg/ml oxLD-L (7.35 ± 0.58;P < 0.01), 1.6 μg/ml (5.27 ± 0.23; P < 0.001) and 4 μg/ml (5.31 ± 0.31; P < 0.001). This decrease in redox potential was associated with an increase acid sphingomyelinase activity and lipid raft formation which could be inhibited by desipramine; SHSY5Y cells treated with oxLDL, and lipids from LDL and oxLDL for 16 h showed significantly increased acid sphingomyelinase activity (5.32 ± 0.35; P < 0.05, 5.21 ± 0.6; P < 0.05, and 5.58 ± 0.44; P < 0.01, respectively) compared to control cells (2.96 ± 0.34). As amyloid beta production is driven by the activity of beta secretase and its association with lipid rafts, we investigated whether lipids from ox-LDL can influence amyloid beta by SHSY-5Y cells in the presence of oxLDL. Using ELISA and Western blot, we confirmed that secretion of amyloid beta oligomers is increased by SHSY-5Y cells in the presence of oxLDL lipids. These data suggest a mechanism whereby LDL, and more significantly oxLDL lipids, can drive amyloid beta production and cytotoxicity in neuronal cells. [1] Li L, Willets RS, Polidori MC, Stahl W, Nelles G, Sies H, Griffiths HR. Oxidative LDL modification is increased in vascular dementia and is inversely associated with cognitive performance. Free Radic Res. 2010 Mar; 44(3): 241–8.
Original languageEnglish
Pages (from-to)688
Number of pages1
JournalExperimental Gerontology
Issue number7
Early online date21 Jun 2013
Publication statusPublished - Jul 2013
Event11th International Symposium on the Neurobiology and Neuroendocrinology of Aging - Bregenz, Austria
Duration: 29 Jul 20123 Aug 2012


Dive into the research topics of 'Oxidised LDL-lipids alter redox ratio, lipid raft formation and increase amyloid beta production by SHSY-5Y cells'. Together they form a unique fingerprint.

Cite this