TY - JOUR
T1 - Paired pulse depression in the somatosensory cortex: associations between MEG and BOLD fMRI.
AU - Stevenson, CM
AU - Wang, F
AU - Brookes, Matthew
AU - Zumer, JM
AU - Francis, Susan T.
AU - Morris, Peter G.
PY - 2012/2/1
Y1 - 2012/2/1
N2 - Interpretation of the blood oxygen level dependent (BOLD) response measured using functional magnetic resonance imaging (fMRI) requires an understanding of the underlying neuronal activity. Here we report on a study using both magnetoencephalography (MEG) and BOLD fMRI, to measure the brain's functional response to electrical stimulation of the median nerve in a paired pulse paradigm. Interstimulus Intervals (ISIs) of 0.25, 0.5, 0.75, 1.0, 1.5 and 2.0 s are used to investigate how the MEG detected neural response to a second pulse is affected by that from a preceding pulse and if these MEG modulations are reflected in the BOLD response. We focus on neural oscillatory activity in the β-band (13–30 Hz) and the P35m component of the signal averaged evoked response in the sensorimotor cortex. A spatial separation of β ERD and ERS following each pulse is demonstrated suggesting that these two effects arise from separate neural generators, with ERS exhibiting a closer spatial relationship with the BOLD response. The spatial distribution and extent of BOLD activity were unaffected by ISI, but modulations in peak amplitude and latency were observed. Non-linearities in both induced oscillatory activity ERS and in the signal averaged evoked response are found for ISIs of up to 2 s when the signal averaged evoked response has returned to baseline, with the P35m component displaying paired pulse depression effects. The β-band ERS magnitude was modulated by ISI, however the ERD magnitude was not. These results support the assumption that BOLD non-linearity arises not only from a non-linear vascular response to neural activity but also a non-linear neural response to the stimulus with ISI up to 2 s.
AB - Interpretation of the blood oxygen level dependent (BOLD) response measured using functional magnetic resonance imaging (fMRI) requires an understanding of the underlying neuronal activity. Here we report on a study using both magnetoencephalography (MEG) and BOLD fMRI, to measure the brain's functional response to electrical stimulation of the median nerve in a paired pulse paradigm. Interstimulus Intervals (ISIs) of 0.25, 0.5, 0.75, 1.0, 1.5 and 2.0 s are used to investigate how the MEG detected neural response to a second pulse is affected by that from a preceding pulse and if these MEG modulations are reflected in the BOLD response. We focus on neural oscillatory activity in the β-band (13–30 Hz) and the P35m component of the signal averaged evoked response in the sensorimotor cortex. A spatial separation of β ERD and ERS following each pulse is demonstrated suggesting that these two effects arise from separate neural generators, with ERS exhibiting a closer spatial relationship with the BOLD response. The spatial distribution and extent of BOLD activity were unaffected by ISI, but modulations in peak amplitude and latency were observed. Non-linearities in both induced oscillatory activity ERS and in the signal averaged evoked response are found for ISIs of up to 2 s when the signal averaged evoked response has returned to baseline, with the P35m component displaying paired pulse depression effects. The β-band ERS magnitude was modulated by ISI, however the ERD magnitude was not. These results support the assumption that BOLD non-linearity arises not only from a non-linear vascular response to neural activity but also a non-linear neural response to the stimulus with ISI up to 2 s.
UR - https://www.sciencedirect.com/science/article/pii/S1053811911012018?via%3Dihub
U2 - 10.1016/j.neuroimage.2011.10.037
DO - 10.1016/j.neuroimage.2011.10.037
M3 - Article
C2 - 22036680
SN - 1053-8119
VL - 59
SP - 2722
EP - 2732
JO - NeuroImage
JF - NeuroImage
IS - 3
ER -