Parametric Study of Environmental Conditions on The Energy Harvesting Efficiency for The Multifunctional Composite Structures

Tao Wen, Alon Ratner, Yu Jia*, Yu Shi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

This paper presents a parametric study of the efficacy of an integrated vibration energy harvesting device under the environmental condition representative of an offshore wind turbine. A multifunctional glass fibre composite with an integrated Micro Fibre Composite (MFC) energy harvesting device was tested by swept sine vibration under environmental conditions that ranged from −40 °C to 70 °C in temperature and 10%RH to 90%RH in humidity in order to characterise the sensitivity and dependence of energy harvesting on environmental conditions. Experimental vibration testing was complemented with theoretical analysis to investigate the relative contributions to the temperature dependence of energy harvesting. This included mechanical properties of the stiffness and strength of the cantilever structure and the electrical properties of the MFC transducer, including its dielectric constants and charge coefficients. An inverse proportionality was observed between the magnitude of harvested energy and the climatic temperature. The efficiency of energy harvesting was dominated by the stiffness of the cantilever, which displayed viscoelastic temperature dependence. The sample was also tested with a vibration profile obtained from a wind turbine in order to validate the temperature influence under typical service conditions. Numerical modal analysis was used to determine the shapes of resonance modes, the frequencies of which were temperature dependent. Humidity was observed to have a secondary influence on energy harvesting, with no significant short-term effect on the structural properties of the samples within the limits of the experimental method.

Original languageEnglish
Article number112979
JournalComposite Structures
Volume255
Early online date17 Sept 2020
DOIs
Publication statusPublished - 1 Jan 2021

Keywords

  • Energy harvesting
  • MFC
  • Multifunctional composite structure

Fingerprint

Dive into the research topics of 'Parametric Study of Environmental Conditions on The Energy Harvesting Efficiency for The Multifunctional Composite Structures'. Together they form a unique fingerprint.

Cite this