Abstract
Although electrophiles are considered as detrimental to cells, accumulating recent evidence indicates that proliferating non-cancerous and particularly cancerous cells utilize these agents for pro-survival and cell cycle promoting signaling. Hence, the redox shift to mild oxidant release must be balanced by multiple defense mechanisms. Our latest findings demonstrate that cell cycle progression, which dictates oxidant level in stress-free conditions, determines PARP1 transcription. Growth modulating factors regulate CDK4/6-RBs-E2Fs axis. In cells arrested in G1 and G0, RB1-E2F1 and RBL2-E2F4 dimers recruit chromatin remodelers such as HDAC1, SWI/SNF and PRC2 to condense chromatin and turn off transcription. Release of retinoblastoma-based repressive complexes from E2F-dependent gene promoters in response to cell transition to S phase enables transcription of PARP1. This enzyme contributes to repair of oxidative DNA damage by supporting several strand break repair pathways and nucleotide or base excision repair pathways, as well as acting as a co-activator of transcription factors such as NRF2 and HIF1a, which control expression of antioxidant enzymes involved in removal of electrophiles and secondary metabolites. Furthermore, PARP1 is indispensible for transcription of the pro-survival kinases MAP2K6, ERK1/2 and AKT1, and for maintaining MAPK activity by suppressing transcription of the MAPK inhibitor, MPK1. In summary, cell cycle controlled PARP1 transcription helps cells to adapt to a pro-oxidant redox shift.
Original language | English |
---|---|
Pages (from-to) | 1-5 |
Journal | Redox biology |
Volume | 18 |
Early online date | 2 Jun 2018 |
DOIs | |
Publication status | Published - Sept 2018 |
Bibliographical note
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Funding: R acknowledges grants from Polish National Science Center (DEC-2013/11/D/NZ2/00033) and Ministry of Science and Higher Education (776/STYP/11/2016); CMS acknowledges funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement number 675132; LV acknowledges grants from the National Research, Development and Innovation Office (GINOP-2.3.2-15-2016-00020-TUMORDNS, GINOP-2.3.2-15-2016-00048-STAYALIVE, OTKA K112336).