Abstract
Advances in statistical physics relating to our understanding of large-scale complex systems have recently been successfully applied in the context of communication networks. Statistical mechanics methods can be used to decompose global system behavior into simple local interactions. Thus, large-scale problems can be solved or approximated in a distributed manner with iterative lightweight local messaging. This survey discusses how statistical physics methodology can provide efficient solutions to hard network problems that are intractable by classical methods. We highlight three typical examples in the realm of networking and communications. In each case we show how a fundamental idea of statistical physics helps solve the problem in an efficient manner. In particular, we discuss how to perform multicast scheduling with message passing methods, how to improve coding using the crystallization process, and how to compute optimal routing by representing routes as interacting polymers.
Original language | English |
---|---|
Pages (from-to) | 144-151 |
Number of pages | 8 |
Journal | IEEE Communications Magazine |
Volume | 52 |
Issue number | 11 |
DOIs | |
Publication status | Published - Nov 2014 |
Bibliographical note
© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Funding: EU FP7-265496 project STAMINA
Keywords
- decoding
- network architecture
- optimization
- physics
- computers ports
- routing protocols
- statistical analysis