Abstract
Since their emergence in 2013, perovskite solar cells have reached remarkable efficiencies exceeding 22%. Such rapid development of this technology has been possible, in part, due to the feed of ideas from previous research in organic photovoltaics (OPVs) and light emitting diodes (OLEDs). This comprehensive review discusses the various polymer strategies that have led to the success of perovskite devices: from hole and electron transporting materials to polymer templating agents. This review further covers how these strategies potentially serve to overcome the two major obstacles that stand in the way of global implementation of perovskite solar cells; stability and J-V curve hysteresis. Through reference and comparison of OPV, OLED, and perovskite technologies, we highlight the need for a unified approach to establish appropriate control systems and ageing protocols that are necessary to further research in this exciting direction. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 549–568.
Original language | English |
---|---|
Pages (from-to) | 549-568 |
Number of pages | 20 |
Journal | Journal of Polymer Science: Part B - Polymer Physics |
Volume | 55 |
Issue number | 7 |
Early online date | 7 Feb 2017 |
DOIs | |
Publication status | Published - 1 Apr 2017 |
Bibliographical note
This is the peer reviewed version of the following article: Isakova, A., & Topham, P. D. (2017). Polymer strategies in perovskite solar cells. Journal of Polymer Science: Part B - Polymer Physics, 55(7), 549-568., which has been published in final form at http://dx.doi.org/10.1002/polb.24301. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Keywords
- charge transport
- perovskite
- photovoltaics
- polymers
- solar cells