Abstract
Fibre lasers are light sources that are synonymous with stability. They can give rise to highly coherent continuous-wave radiation, or a stable train of mode locked pulses with well-defined characteristics. However, they can also exhibit an exceedingly diverse range of nonlinear operational regimes spanning a multi-dimensional parameter space. The complex nature of the dynamics poses significant challenges in the theoretical and experimental studies of such systems. Here, we demonstrate how the real-time experimental methodology of spatio-temporal dynamics can be used to unambiguously identify and discern between such highly complex lasing regimes. This two-dimensional representation of laser intensity allows the identification and tracking of individual features embedded in the radiation as they make round-trip circulations inside the cavity. The salient features of this methodology are highlighted by its application to the case of Raman fibre lasers and a partially mode locked ring fibre laser operating in the normal dispersion regime.
Original language | English |
---|---|
Article number | 65 |
Number of pages | 15 |
Journal | Applied Sciences |
Volume | 6 |
Issue number | 3 |
DOIs | |
Publication status | Published - 25 Feb 2016 |
Bibliographical note
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).ERC project ULTRALASER, H2020 project CARDIALLY, Russian Ministry of Science and Education (14.584.21.0014); Russian Foundation for Basic Research (projects 16-32-60153, 15-02-07925).
Keywords
- fibre lasers
- real-time characterization
- nonlinear dynamics
- spatio-temporal dynamics
- self-organization
- pattern formation