Recent Advances in Numerical and Experimental Downwind Sail Aerodynamics

Jean-Baptiste Souppez, Abel Arredondo-Galeana, Ignazio Maria Viola

Research output: Contribution to journalArticlepeer-review

Abstract

Over the past two decades, the numerical and experimental progresses made in the field of downwind sail aerodynamics have contributed to a new understanding of their behaviour and improved designs. Contemporary advances include the numerical and experimental evidence of the leading-edge vortex, as well as greater correlation between model and full-scale testing. Nevertheless, much remains to be understood on the aerodynamics of downwind sails and their flow structures. In this paper, a detailed review of the different flow features of downwind sails, including the effect of separation bubbles and leading-edge vortices will be discussed. New experimental measurements of the flow field around a highly cambered thin circular arc geometry, representative of a bi-dimensional section of a spinnaker, will also be presented here for the first time. These results allow interpretation of some inconsistent data from past experiments and simulations, and to provide guidance for future model testing and sail design.
Original languageEnglish
Pages (from-to)45-65
Number of pages21
JournalJournal of Sailing Technology
Volume4
Issue number1
Publication statusPublished - 11 Sept 2019

Bibliographical note

© 2019 SNAME

Fingerprint

Dive into the research topics of 'Recent Advances in Numerical and Experimental Downwind Sail Aerodynamics'. Together they form a unique fingerprint.

Cite this