Rectified Output Power Analysis of Piezoelectric Energy Harvester Arrays under Noisy Excitation

Sijun Du, Yu Jia, Emmanuelle Arroyo, Ashwin A Seshia

Research output: Contribution to journalConference article

Abstract

In the past decade, vibration energy harvesting has emerged as a potential alternative solution to power wireless sensor nodes. In real-world implementations, external excitation can be very noisy and includes noise signals in a wide frequency band. In order to accommodate operation under noisy excitation, arrays of energy harvesters with different resonance frequencies are often employed to improve responsibility. Due to the nature of noisy excitation and the difference in resonance frequencies, the response voltage signals from each harvester can be very different in amplitude, frequency and phase. In this paper, an array with two cantilevered energy harvesters is studied to analyze the rectified output power with different configurations using full-bridge rectifiers (FBR). The experiments show that connecting the two harvesters in parallel or in series before connecting with a FBR results in significant voltage cancellation due to phase mismatch. The most efficient way to extract energy is to use two FBRs for the two cantilevered energy harvesters, individually, and charge to one single storage capacitor connected at the outputs of the two FBRs.
Original languageEnglish
Article number012108
JournalJournal of Physics: Conference Series
Volume1052
Issue number1
Early online date14 Nov 2017
DOIs
Publication statusPublished - 1 Jan 2018

Fingerprint

output
rectifiers
excitation
energy
electric potential
cancellation
capacitors
vibration
sensors
configurations

Bibliographical note

Content from this work may be used under the terms of theCreative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd

Cite this

@article{a1828d87829e4b8f9fcdecf58a20ca31,
title = "Rectified Output Power Analysis of Piezoelectric Energy Harvester Arrays under Noisy Excitation",
abstract = "In the past decade, vibration energy harvesting has emerged as a potential alternative solution to power wireless sensor nodes. In real-world implementations, external excitation can be very noisy and includes noise signals in a wide frequency band. In order to accommodate operation under noisy excitation, arrays of energy harvesters with different resonance frequencies are often employed to improve responsibility. Due to the nature of noisy excitation and the difference in resonance frequencies, the response voltage signals from each harvester can be very different in amplitude, frequency and phase. In this paper, an array with two cantilevered energy harvesters is studied to analyze the rectified output power with different configurations using full-bridge rectifiers (FBR). The experiments show that connecting the two harvesters in parallel or in series before connecting with a FBR results in significant voltage cancellation due to phase mismatch. The most efficient way to extract energy is to use two FBRs for the two cantilevered energy harvesters, individually, and charge to one single storage capacitor connected at the outputs of the two FBRs.",
author = "Sijun Du and Yu Jia and Emmanuelle Arroyo and Seshia, {Ashwin A}",
note = "Content from this work may be used under the terms of theCreative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd",
year = "2018",
month = "1",
day = "1",
doi = "10.1088/1742-6596/1052/1/012108",
language = "English",
volume = "1052",
journal = "Journal of Physics",
issn = "1742-6588",
publisher = "IOP Publishing Ltd.",
number = "1",

}

Rectified Output Power Analysis of Piezoelectric Energy Harvester Arrays under Noisy Excitation. / Du, Sijun; Jia, Yu; Arroyo, Emmanuelle; Seshia, Ashwin A.

In: Journal of Physics: Conference Series, Vol. 1052, No. 1, 012108, 01.01.2018.

Research output: Contribution to journalConference article

TY - JOUR

T1 - Rectified Output Power Analysis of Piezoelectric Energy Harvester Arrays under Noisy Excitation

AU - Du, Sijun

AU - Jia, Yu

AU - Arroyo, Emmanuelle

AU - Seshia, Ashwin A

N1 - Content from this work may be used under the terms of theCreative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

PY - 2018/1/1

Y1 - 2018/1/1

N2 - In the past decade, vibration energy harvesting has emerged as a potential alternative solution to power wireless sensor nodes. In real-world implementations, external excitation can be very noisy and includes noise signals in a wide frequency band. In order to accommodate operation under noisy excitation, arrays of energy harvesters with different resonance frequencies are often employed to improve responsibility. Due to the nature of noisy excitation and the difference in resonance frequencies, the response voltage signals from each harvester can be very different in amplitude, frequency and phase. In this paper, an array with two cantilevered energy harvesters is studied to analyze the rectified output power with different configurations using full-bridge rectifiers (FBR). The experiments show that connecting the two harvesters in parallel or in series before connecting with a FBR results in significant voltage cancellation due to phase mismatch. The most efficient way to extract energy is to use two FBRs for the two cantilevered energy harvesters, individually, and charge to one single storage capacitor connected at the outputs of the two FBRs.

AB - In the past decade, vibration energy harvesting has emerged as a potential alternative solution to power wireless sensor nodes. In real-world implementations, external excitation can be very noisy and includes noise signals in a wide frequency band. In order to accommodate operation under noisy excitation, arrays of energy harvesters with different resonance frequencies are often employed to improve responsibility. Due to the nature of noisy excitation and the difference in resonance frequencies, the response voltage signals from each harvester can be very different in amplitude, frequency and phase. In this paper, an array with two cantilevered energy harvesters is studied to analyze the rectified output power with different configurations using full-bridge rectifiers (FBR). The experiments show that connecting the two harvesters in parallel or in series before connecting with a FBR results in significant voltage cancellation due to phase mismatch. The most efficient way to extract energy is to use two FBRs for the two cantilevered energy harvesters, individually, and charge to one single storage capacitor connected at the outputs of the two FBRs.

UR - https://iopscience.iop.org/article/10.1088/1742-6596/1052/1/012108

U2 - 10.1088/1742-6596/1052/1/012108

DO - 10.1088/1742-6596/1052/1/012108

M3 - Conference article

VL - 1052

JO - Journal of Physics

JF - Journal of Physics

SN - 1742-6588

IS - 1

M1 - 012108

ER -