Screening of Nickel and Platinum Catalysts for Glycerol Conversion to Gas Products in Hydrothermal Media

Carine T. Alves, Jude A. Onwudili*, Xiaohan Ren (Editor), Fei Sun (Editor), Juan Chen (Editor)

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


The production of low-carbon gaseous fuels from biomass has the potential to reduce greenhouse gas emissions and promote energy sustainability, stability and affordability around the world. Glycerol, a large-volume by-product of biodiesel production, is a potential feedstock for the production of low-carbon energy vectors. In this present work, an aqueous solution of pure glycerol was reacted under hydrothermal conditions using a total of 10 types of heterogeneous catalysts to evaluate its conversion to gas products (hydrogen, methane, CO, CO2 and C2–C4 hydrocarbon gases). Two bimetallic Ni-Fe and Ni-Cu catalysts, three Pt-based catalysts and physical mixtures of the five catalysts were tested. The reactions were carried out in a batch reactor for 1 h reaction time, using a 9:1 mass ratio of water/glycerol (10 wt%) and the reaction temperatures ranged between 250–350 °C using and without using 1 g of catalyst. The effects of the catalysts and reaction conditions on the conversion of glycerol in terms of carbon and hydrogen gasification efficiencies, selectivity and yields of components in the gas products were investigated. CO2 remained the most dominant gas product in all experiments. The results indicated that increasing the reaction temperature favoured gas formation and both carbon and hydrogen gasification efficiencies. The combination of Ni-Cu and Pt/C catalysts was the most selective catalyst for gas formation at 350 °C, giving carbon gasification efficiency of 95.6 wt%. Individually, the catalyst with the highest hydrogen production was Pt/C and the highest propane yield was obtained with the Ni-Cu bimetallic catalyst. Some catalysts showed good structural stability in hydrothermal media but need improvements towards better yields of desired fuel gases.
Original languageEnglish
Article number7571
Number of pages19
Issue number20
Early online date13 Oct 2022
Publication statusPublished - Oct 2022

Bibliographical note

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// 4.0/).


  • Article
  • hydrothermal reforming
  • glycerol
  • hydrogen
  • propane
  • heterogeneous catalysis


Dive into the research topics of 'Screening of Nickel and Platinum Catalysts for Glycerol Conversion to Gas Products in Hydrothermal Media'. Together they form a unique fingerprint.

Cite this