Size-dependent radiation tolerance in ion irradiated TiN/AlN nanolayer films

I. Kim, L. Jiao, F. Khatkhatay, M.S. Martin, J. Lee, L. Shao, X. Zhang, J.G. Swadener, Y.Q. Wang, J. Gan, J.I. Cole, H. Wang

Research output: Contribution to journalArticlepeer-review

Abstract

Interface effects on ion-irradiation tolerance properties are investigated in nanolayered TiN/AlN films with individual layer thickness varied from 5 nm to 50 nm, prepared by pulsed laser deposition. Evolution of the microstructure and hardness of the multilayer films are examined on the specimens before and after He ion-implantation to a fluence of 4 × 10 m at 50 keV. The suppression of amorphization in AlN layers and the reduction of radiation-induced softening are observed in all nanolayer films. A clear size-dependent radiation tolerance characteristic is observed in the nanolayer films, i.e., the samples with the optimum layer thickness from 10 nm to 20 nm show the best ion irradiation tolerance properties, and a critical layer thickness of more than 5 nm is necessary to prevent severe intermixing. This study suggests that both the interface characteristics and the critical length scale (layer thickness) contribute to the reduction of the radiation-induced damages in nitride-based ceramic materials.
Original languageEnglish
Pages (from-to)47-53
Number of pages7
JournalJournal of Nuclear Materials
Volume441
Issue number1-3
DOIs
Publication statusPublished - Oct 2013

Fingerprint

Dive into the research topics of 'Size-dependent radiation tolerance in ion irradiated TiN/AlN nanolayer films'. Together they form a unique fingerprint.

Cite this