Sparse on-line Gaussian processes

Lehel Csató, Manfred Opper

    Research output: Working paperTechnical report

    Abstract

    We develop an approach for sparse representations of Gaussian Process (GP) models (which are Bayesian types of kernel machines) in order to overcome their limitations for large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the GP model. By using an appealing parametrisation and projection techniques that use the RKHS norm, recursions for the effective parameters and a sparse Gaussian approximation of the posterior process are obtained. This allows both for a propagation of predictions as well as of Bayesian error measures. The significance and robustness of our approach is demonstrated on a variety of experiments.
    Original languageEnglish
    Place of PublicationBirmingham
    PublisherAston University
    Number of pages18
    VolumeNCRG/2001/014
    Publication statusPublished - 9 Sep 2002

    Keywords

    • sparse representations
    • Gaussian Process
    • large data sets
    • online algorithm

    Fingerprint Dive into the research topics of 'Sparse on-line Gaussian processes'. Together they form a unique fingerprint.

  • Research Output

    Sparse on-line Gaussian processes

    Csató, L. & Opper, M., Mar 2002, In : Neural Computation. 14, 3, p. 641-668 28 p.

    Research output: Contribution to journalArticle

  • Cite this

    Csató, L., & Opper, M. (2002). Sparse on-line Gaussian processes. Aston University.