Sparse on-line Gaussian processes

Lehel Csató, Manfred Opper

Research output: Preprint or Working paperTechnical report

Abstract

We develop an approach for sparse representations of Gaussian Process (GP) models (which are Bayesian types of kernel machines) in order to overcome their limitations for large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the GP model. By using an appealing parametrisation and projection techniques that use the RKHS norm, recursions for the effective parameters and a sparse Gaussian approximation of the posterior process are obtained. This allows both for a propagation of predictions as well as of Bayesian error measures. The significance and robustness of our approach is demonstrated on a variety of experiments.
Original languageEnglish
Place of PublicationBirmingham
PublisherAston University
Number of pages18
VolumeNCRG/2001/014
Publication statusPublished - 9 Sept 2002

Keywords

  • sparse representations
  • Gaussian Process
  • large data sets
  • online algorithm

Fingerprint

Dive into the research topics of 'Sparse on-line Gaussian processes'. Together they form a unique fingerprint.
  • Sparse on-line Gaussian processes

    Csató, L. & Opper, M., Mar 2002, In: Neural Computation. 14, 3, p. 641-668 28 p.

    Research output: Contribution to journalArticlepeer-review

Cite this