Surface-Modified Polypyrrole-Coated PLCL and PLGA Nerve Guide Conduits Fabricated by 3D Printing and Electrospinning

Manasanan Namhongsa, Donraporn Daranarong, Montira Sriyai, Robert Molloy, Sukunya Ross, Gareth M. Ross, Adisorn Tuantranont, Jiraporn Tocharus, Sivanan Sivasinprasasn, Paul D. Topham, Brian Tighe, Winita Punyodom

Research output: Contribution to journalArticlepeer-review

Abstract

The efficiency of nerve guide conduits (NGCs) in repairing peripheral nerve injury is not high enough yet to be a substitute for autografts and is still insufficient for clinical use. To improve this efficiency, 3D electrospun scaffolds (3D/E) of poly(l-lactide-co-ε-caprolactone) (PLCL) and poly(l-lactide-co-glycolide) (PLGA) were designed and fabricated by the combination of 3D printing and electrospinning techniques, resulting in an ideal porous architecture for NGCs. Polypyrrole (PPy) was deposited on PLCL and PLGA scaffolds to enhance biocompatibility for nerve recovery. The designed pore architecture of these “PLCL-3D/E” and “PLGA-3D/E” scaffolds exhibited a combination of nano- and microscale structures. The mean pore size of PLCL-3D/E and PLGA-3D/E scaffolds were 289 ± 79 and 287 ± 95 nm, respectively, which meets the required pore size for NGCs. Furthermore, the addition of PPy on the surfaces of both PLCL-3D/E (PLCL-3D/E/PPy) and PLGA-3D/E (PLGA-3D/E/PPy) led to an increase in their hydrophilicity, conductivity, and noncytotoxicity compared to noncoated PPy scaffolds. Both PLCL-3D/E/PPy and PLGA-3D/E/PPy showed conductivity maintained at 12.40 ± 0.12 and 10.50 ± 0.08 Scm–1 for up to 15 and 9 weeks, respectively, which are adequate for the electroconduction of neuron cells. Notably, the PLGA-3D/E/PPy scaffold showed superior cytocompatibility when compared with PLCL-3D/E/PPy, as evident via the viability assay, proliferation, and attachment of L929 and SC cells. Furthermore, analysis of cell health through membrane leakage and apoptotic indices showed that the 3D/E/PPy scaffolds displayed significant decreases in membrane leakage and reductions in necrotic tissue. Our finding suggests that these 3D/E/PPy scaffolds have a favorable design architecture and biocompatibility with potential for use in peripheral nerve regeneration applications.
Original languageEnglish
JournalBiomacromolecules
Early online date28 Sep 2022
DOIs
Publication statusE-pub ahead of print - 28 Sep 2022

Bibliographical note

Copyright © 2022 American Chemical Society. This accepted manuscript version is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/.

Access to the Version of Record for M. Namhongsa, D. Daranarong, M. Sriyai, R. Molloy, S. Ross, G.M. Ross, A. Tuantranont, J. Tocharus, S. Jiraporn, S. Sivasinprasasn, P.D. Topham, B. Tighe, and W. Punyodom, (2022). 'Surface-Modified Polypyrrole-Coated PLCL and PLGA Nerve Guide Conduits Fabricated by 3D Printing and Electrospinning'. Biomacromolecules, - can be found here: https://doi.org/10.1021/acs.biomac.2c00626

Keywords

  • Materials Chemistry
  • Polymers and Plastics
  • Biomaterials
  • Bioengineering

Fingerprint

Dive into the research topics of 'Surface-Modified Polypyrrole-Coated PLCL and PLGA Nerve Guide Conduits Fabricated by 3D Printing and Electrospinning'. Together they form a unique fingerprint.

Cite this