Abstract
In recent years, surface plasmon-induced photocatalytic materials with tunable mesoporous framework have attracted considerable attention in energy conversion and environmental remediation. Herein we report a novel Au nanoparticles decorated mesoporous graphitic carbon nitride (Au/mp-g-C3N4) nanosheets via a template-free and green in situ photo-reduction method. The synthesized Au/mp-g-C3N4 nanosheets exhibit a strong absorption edge in visible and near-IR region owing to the surface plasmon resonance effect of Au nanoparticles. More attractively, Au/mp-g-C3N4 exhibited much higher photocatalytic activity than that of pure mesoporous and bulk g-C3N4 for the degradation of rhodamine B under sunlight irradiation. Furthermore, the photocurrent and photoluminescence studies demonstrated that the deposition of Au nanoparticles on the surface of mesoporous g-C3N4 could effectively inhibit the recombination of photogenerated charge carriers leading to the enhanced photocatalytic activity. More importantly, the synthesized Au/mp-g-C3N4 nanosheets possess high reusability. Hence, Au/mp-g-C3N4 could be promising photoactive material for energy and environmental applications.
Original language | English |
---|---|
Pages (from-to) | 51-58 |
Number of pages | 8 |
Journal | Materials Research Bulletin |
Volume | 75 |
Early online date | 17 Nov 2015 |
DOIs | |
Publication status | Published - 1 Mar 2016 |
Bibliographical note
-Supplementary data availabe on the journal websiteKeywords
- nanostructures
- semiconductors
- optical properties
- x-ray diffraction
- catalytic properties