Sustainable Generation of Ni(OH)2 Nanoparticles for the Green Synthesis of 5-Substituted 1 H-Tetrazoles: A Competent Turn on Fluorescence Sensing of H2O2

Mita Halder, Md Mominul Islam, Pritam Singh, Anupam Singha Roy*, Sk Manirul Islam, Kamalika Sen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

A mutually correlated green protocol has been devised that originates from a sustainable production of β-Ni(OH)2 nanoparticles which is used for an efficient catalytic synthesis of versatile substituted tetrazoles, under mild reaction conditions in water via a simple, one-pot, eco-friendly method. The synthesis is followed by derivatization into a highly fluorescence active compound 9-(4-(5-(quinolin-2-yl)-1H-tetrazol-1-yl)phenyl)-9H-carbazole that can be used at tracer concentrations (0.1 μM) to detect as well as quantify hydrogen peroxide down to 2 μM concentration. The nanocatalyst was synthesized by a simple, proficient, and cost-effective methodology and characterized thoroughly by UV-vis absorption and Fourier transform infrared spectra, N2 adsorption/desorption, high resolution transmission electron microscopy, powder X-ray diffraction pattern, field emission scanning electron microscopy, and thermogravimetric analysis. Broad substrate scope, easy handling, higher efficiency, low cost, and reusability of the catalyst are some of the important features of this heterogeneous catalytic system. The strong analytical performance of the resultant derivative in low-level quantification of potentially hazardous hydrogen peroxide is the key success of the overall green synthesis procedure reported here.

Original languageEnglish
Pages (from-to)8169-8180
Number of pages12
JournalOmega (ACS)
Volume3
Issue number7
Early online date23 Jul 2018
DOIs
Publication statusE-pub ahead of print - 23 Jul 2018

Bibliographical note

This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

Fingerprint Dive into the research topics of 'Sustainable Generation of Ni(OH)<sub>2</sub> Nanoparticles for the Green Synthesis of 5-Substituted 1 H-Tetrazoles: A Competent Turn on Fluorescence Sensing of H<sub>2</sub>O<sub>2</sub>'. Together they form a unique fingerprint.

Cite this