System modelling and performance assessment of green hydrogen production by integrating proton exchange membrane electrolyser with wind turbine

Tabbi Wilberforce, A.G. Olabi, Muhammad Imran, Enas Taha Sayed, Mohammad Ali Abdelkareem

Research output: Contribution to journalArticlepeer-review

Abstract

This investigation delves into the production of green hydrogen with the aid of a polymer electrolyte membrane electrolyzer with its source of energy harnessed from wind using a vertical axis wind turbine (VAWT). The integrated numerical approach was adopted in the simulation environment of MATLAB, Simulink, and Simscape™ to develop the comprehensive mathematical model of the system. The component-level models are linked to the electrolyser, and wind turbines are modelled distinctively considering their efficiencies. The study first explores current types of electrolysers, from their operational characteristics to their merits and demerits. The Proton Exchange Membrane Electrolysers were recommended as the best electrolysis alternative due to their fast start-up time, and the technology being matured. Various power electronics required in connecting the energy from the wind turbine to the electrolyser was equally discussed. Some of these notable power electronics include the Permanent Magnet Synchronous Generators (PMSG), Full Bridge Diode Rectifier, as well as DC–DC Buck Boost Converter. The study was conducted at Warwickshire area as the location for the installation of the Proton Exchange Membrane Electrolyser System. It was however deduced that the performance of the electrolyser was predominant at higher temperatures but lower pressures. The intensity of wind also had a direct correlation to the overall performance of the electrolyser. In summary, for the wind turbine under investigation, at 1 bar pressure and operating temperature of 20 °C, 65,770 L of hydrogen was produced and this is equivalent to 4656.3 kg of hydrogen or 156.4 kWh of energy.
Original languageEnglish
Pages (from-to)12089-12111
Number of pages23
JournalInternational Journal of Hydrogen Energy
Volume48
Issue number32
Early online date8 Feb 2023
DOIs
Publication statusPublished - 15 Apr 2023

Keywords

  • DC–DC Buck boost converter
  • Hydrogen production
  • Proton exchange membrane electrolyser
  • Wind energy

Fingerprint

Dive into the research topics of 'System modelling and performance assessment of green hydrogen production by integrating proton exchange membrane electrolyser with wind turbine'. Together they form a unique fingerprint.

Cite this