Targeted mechanical and energy absorption properties of 3D printed aluminium metamaterials

Manpreet Singh, Arun Arjunan*, Ahmad Baroutaji, Chameekara T. Wanniarachchi, Ayyappan S. Praveen, John Robinson, Aaron Vance, Martin Appiah, Abul Arafat

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The potential of 3D-printed AlSi10Mg auxetic structures for diverse mechanical and energy-absorbing needs remains untapped. This article reveals a multi-criteria framework for the laser powder bed fused (L-PBF) − υ architecture considering elastic modulus (E), yield strength ( σ y ), specific energy absorption (SEA), peak crush force (PCF) and crush force efficiency (CFE). The framework seamlessly combines trial data, multi-criteria decision-making, and performance indicators. Five auxetic structures were 3D-printed, characterised for mechanical and energy absorption traits within a 0.17–0.26 relative density range. The outcomes revealed a range of values for various parameters, including the Poisson’s ratio (−0.03 to −0.22), porosity (80.87–87.60 %), CFE (33–83 %), elastic modulus (100–632 MPa), yield strength (1.8–10 MPa), and SEA (0.5–6.8 kJ/kg). The reliability of these structures was ensured through a meticulous selection process based on an extensive literature review and empirical validation. To address the limitations of theoretical models, our work goes beyond theoretical predictions by experimentally validating these properties and integrating advanced methodologies such as the ‘analytic hierarchy process’ (AHP) and the ‘technique for order of preference by similarity to ideal solution’ (TOPSIS). This allows us to determine the best-performing auxetic architecture. The decision-making process was informed by five user-defined parameters prioritised in the order of CFE> − υ > E> σ y > SEA based on their relative closeness identifying AUX5 as the best performing auxetic architecture. This study introduces an innovative method for crafting scenario-based auxetic architectures with varying performance levels based on their relative importance.
Original languageEnglish
Article number100356
Number of pages16
JournalNext Materials
Volume7
Early online date28 Aug 2024
DOIs
Publication statusE-pub ahead of print - 28 Aug 2024

Keywords

  • 3D printing
  • Poisson's ratio
  • Aluminium
  • Energy absorption
  • AlSi10Mg

Fingerprint

Dive into the research topics of 'Targeted mechanical and energy absorption properties of 3D printed aluminium metamaterials'. Together they form a unique fingerprint.

Cite this