TY - JOUR
T1 - The cross-flow instability of the boundary layer on a rotating cone
AU - Garrett, Stephen
AU - Hussain, Z.
AU - Stephen, S. O.
PY - 2009/3/10
Y1 - 2009/3/10
N2 - Experimental studies have shown that the boundary-layer flow over a rotating cone is susceptible to cross-flow and centrifugal instability modes of spiral nature, depending on the cone sharpness. For half-angles (ψ) ranging from propeller nose cones to rotating disks (ψ ≥ 40°), the instability triggers co-rotating vortices, whereas for sharp spinning missiles (ψ < 40°), counter-rotating vortices are observed. In this paper we provide a mathematical description of the onset of co-rotating vortices for a family of cones rotating in quiescent fluid, with a view towards explaining the effect of ψ on the underlying transition of dominant instability. We investigate the stability of inviscid cross-flow modes (type I) as well as modes which arise from a viscous–Coriolis force balance (type II), using numerical and asymptotic methods. The influence of ψ on the number and orientation of the spiral vortices is examined, with comparisons drawn between our two distinct methods as well as with previous experimental studies. Our results indicate that increasing ψ has a stabilizing effect on both the type I and type II modes. Favourable agreement is obtained between the numerical and asymptotic methods presented here and existing experimental results for ψ > 40°. Below this half-angle we suggest that an alternative instability mechanism is at work, which is not amenable to investigation using the formulation presented here.
AB - Experimental studies have shown that the boundary-layer flow over a rotating cone is susceptible to cross-flow and centrifugal instability modes of spiral nature, depending on the cone sharpness. For half-angles (ψ) ranging from propeller nose cones to rotating disks (ψ ≥ 40°), the instability triggers co-rotating vortices, whereas for sharp spinning missiles (ψ < 40°), counter-rotating vortices are observed. In this paper we provide a mathematical description of the onset of co-rotating vortices for a family of cones rotating in quiescent fluid, with a view towards explaining the effect of ψ on the underlying transition of dominant instability. We investigate the stability of inviscid cross-flow modes (type I) as well as modes which arise from a viscous–Coriolis force balance (type II), using numerical and asymptotic methods. The influence of ψ on the number and orientation of the spiral vortices is examined, with comparisons drawn between our two distinct methods as well as with previous experimental studies. Our results indicate that increasing ψ has a stabilizing effect on both the type I and type II modes. Favourable agreement is obtained between the numerical and asymptotic methods presented here and existing experimental results for ψ > 40°. Below this half-angle we suggest that an alternative instability mechanism is at work, which is not amenable to investigation using the formulation presented here.
UR - https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/crossflow-instability-of-the-boundary-layer-on-a-rotating-cone/6679F4BE3CD0CE2F4A0E6FF5B9A013F7
U2 - 10.1017/S0022112008005181
DO - 10.1017/S0022112008005181
M3 - Article
SN - 0022-1120
VL - 622
SP - 209
EP - 232
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
ER -