The MOEADr Package – A Component-Based Framework for Multiobjective Evolutionary Algorithms Based on Decomposition

Felipe Campelo, Lucas Batista, Claus Aranha

Research output: Contribution to journalArticle

Abstract

Multiobjective Evolutionary Algorithms based on Decomposition (MOEA/D) represent a widely used class of population-based metaheuristics for the solution of multicriteria optimization problems. We introduce the MOEADr package, which offers many of these variants as instantiations of a component-oriented framework. This approach contributes for easier reproducibility of existing MOEA/D variants from the literature, as well as for faster development and testing of new composite algorithms. The package offers an standardized, modular implementation of MOEA/D based on this framework, which was designed aiming at providing researchers and practitioners with a standard way to discuss and express MOEA/D variants. In this paper we introduce the design principles behind the MOEADr package, as well as its current components. Three case studies are provided to illustrate the main aspects of the package.
Original languageEnglish
Pages (from-to)1-39
JournalJournal of Statistical Software
Volume92
Issue number6
DOIs
Publication statusPublished - 23 Feb 2020

Bibliographical note

This work is licensed under the licenses
Paper: Creative Commons Attribution 3.0 Unported License
Code: GNU General Public License (at least one of version 2 or version 3) or a GPL-compatible license.

Keywords

  • Component-oriented design
  • MOEA/D
  • Multiobjective evolutionary algorithms
  • R

Fingerprint Dive into the research topics of 'The MOEADr Package – A Component-Based Framework for Multiobjective Evolutionary Algorithms Based on Decomposition'. Together they form a unique fingerprint.

  • Research Output

    MOEADr: Component-Wise MOEA/D Implementation

    Campelo, F. & Aranha, C., 16 Mar 2017

    Research output: Non-textual formSoftware

    Open Access
  • Cite this