TY - JOUR

T1 - The stability and transition of the boundary layer on a rotating sphere

AU - Garrett, Stephen

AU - Peake, N.

PY - 2002

Y1 - 2002

N2 - This paper is concerned with convective and absolute instabilities in the boundary-layer flow over the outer surface of a sphere rotating in an otherwise still fluid. Viscous and streamline-curvature effects are included and the analysis is conducted between latitudes of 10° and 80° from the axis of rotation. Both convective and absolute instabilities are found at each latitude within specific parameter spaces. The results of the convective instability analysis show that a crossflow instability mode is the most dangerous below θ = 66°. Above this latitude a streamline-curvature mode is found to be the most dangerous, which coincides with the appearance of reverse flow in the radial component of the mean flow. At low latitudes the disturbances are considered to be stationary, but at higher latitudes they are taken to rotate at 76% of the sphere surface speed, as observed in experimental studies. Our predictions of the Reynolds number and vortex angle at the onset of convective instability are consistent with existing experimental measurements. Results are also presented that suggest that the occurrence of the slowly rotating vortices is associated with the dominance of the streamline-curvature mode at θ = 66°. The local Reynolds number at the predicted onset of absolute instability matches experimental data well for the onset of turbulence at θ = 30°; beyond this latitude the discrepancy increases but remains relatively small below θ = 70°. It is suggested that this absolute instability may cause the onset of transition below θ = 70°. Close to the pole the predictions of each stability analysis are seen to approach those of existing rotating disk investigations.

AB - This paper is concerned with convective and absolute instabilities in the boundary-layer flow over the outer surface of a sphere rotating in an otherwise still fluid. Viscous and streamline-curvature effects are included and the analysis is conducted between latitudes of 10° and 80° from the axis of rotation. Both convective and absolute instabilities are found at each latitude within specific parameter spaces. The results of the convective instability analysis show that a crossflow instability mode is the most dangerous below θ = 66°. Above this latitude a streamline-curvature mode is found to be the most dangerous, which coincides with the appearance of reverse flow in the radial component of the mean flow. At low latitudes the disturbances are considered to be stationary, but at higher latitudes they are taken to rotate at 76% of the sphere surface speed, as observed in experimental studies. Our predictions of the Reynolds number and vortex angle at the onset of convective instability are consistent with existing experimental measurements. Results are also presented that suggest that the occurrence of the slowly rotating vortices is associated with the dominance of the streamline-curvature mode at θ = 66°. The local Reynolds number at the predicted onset of absolute instability matches experimental data well for the onset of turbulence at θ = 30°; beyond this latitude the discrepancy increases but remains relatively small below θ = 70°. It is suggested that this absolute instability may cause the onset of transition below θ = 70°. Close to the pole the predictions of each stability analysis are seen to approach those of existing rotating disk investigations.

UR - https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/stability-and-transition-of-the-boundary-layer-on-a-rotating-sphere/65FA90169A5EB51AAD3642CA0829E27B

U2 - 10.1017/S0022112001007571

DO - 10.1017/S0022112001007571

M3 - Article

VL - 456

SP - 199

JO - Journal of Fluid Mechanics

JF - Journal of Fluid Mechanics

SN - 0022-1120

ER -