TY - JOUR
T1 - THPP target assignment reveals EchA6 as an essential fatty acid shuttle in mycobacteria
AU - Cox, Jonathan A.G.
AU - Abrahams, Katherine A.
AU - Alemparte, Carlos
AU - Ghidelli-Disse, Sonja
AU - Rullas, Joaquín
AU - Angulo-Barturen, Iñigo
AU - Singh, Albel
AU - Gurcha, Sudagar S.
AU - Nataraj, Vijayashankar
AU - Bethell, Stephen
AU - Remuiñán, Modesto J.
AU - Encinas, Lourdes
AU - Jervis, Peter J.
AU - Cammack, Nicholas C.
AU - Bhatt, Apoorva
AU - Kruse, Ulrich
AU - Bantscheff, Marcus
AU - Fütterer, Klaus
AU - Barros, David
AU - Ballell, Lluis
AU - Drewes, Gerard
AU - Besra, Gurdyal S.
PY - 2016/1/18
Y1 - 2016/1/18
N2 - Phenotypic screens for bactericidal compounds against drug-resistant tuberculosis are beginning to yield novel inhibitors. However, reliable target identification remains challenging. Here, we show that tetrahydropyrazo[1,5-a]pyrimidine-3-carboxamide (THPP) selectively pulls down EchA6 in a stereospecific manner, instead of the previously assigned target Mycobacterium tuberculosis MmpL3. While homologous to mammalian enoyl-coenzyme A (CoA) hydratases, EchA6 is non-catalytic yet essential and binds long-chain acyl-CoAs. THPP inhibitors compete with CoA-binding, suppress mycolic acid synthesis, and are bactericidal in a mouse model of chronic tuberculosis infection. A point mutation, W133A, abrogated THPP-binding and increased both the in vitro minimum inhibitory concentration and the in vivo effective dose 99 in mice. Surprisingly, EchA6 interacts with selected enzymes of fatty acid synthase II (FAS-II) in bacterial two-hybrid assays, suggesting essentiality may be linked to feeding long-chain fatty acids to FAS-II. Finally, our data show that spontaneous resistance-conferring mutations can potentially obscure the actual target or alternative targets of small molecule inhibitors.
AB - Phenotypic screens for bactericidal compounds against drug-resistant tuberculosis are beginning to yield novel inhibitors. However, reliable target identification remains challenging. Here, we show that tetrahydropyrazo[1,5-a]pyrimidine-3-carboxamide (THPP) selectively pulls down EchA6 in a stereospecific manner, instead of the previously assigned target Mycobacterium tuberculosis MmpL3. While homologous to mammalian enoyl-coenzyme A (CoA) hydratases, EchA6 is non-catalytic yet essential and binds long-chain acyl-CoAs. THPP inhibitors compete with CoA-binding, suppress mycolic acid synthesis, and are bactericidal in a mouse model of chronic tuberculosis infection. A point mutation, W133A, abrogated THPP-binding and increased both the in vitro minimum inhibitory concentration and the in vivo effective dose 99 in mice. Surprisingly, EchA6 interacts with selected enzymes of fatty acid synthase II (FAS-II) in bacterial two-hybrid assays, suggesting essentiality may be linked to feeding long-chain fatty acids to FAS-II. Finally, our data show that spontaneous resistance-conferring mutations can potentially obscure the actual target or alternative targets of small molecule inhibitors.
UR - https://www.nature.com/articles/nmicrobiol20156
U2 - 10.1038/nmicrobiol.2015.6
DO - 10.1038/nmicrobiol.2015.6
M3 - Article
C2 - 27571973
SN - 2058-5276
VL - 1
JO - Nature Microbiology
JF - Nature Microbiology
M1 - 15006
ER -