Towards an in-vitro multi-cellular human airways model for evaluating the effects of Electronic cigarettes

Pranav Vasanthi Bathri Narayanan, Laura J. Leslie, James E. Brown, Lindsay J. Marshall

Research output: Contribution to conferencePoster

Abstract

Despite being poor representations of human airways architecture, innumerable animals, especially rodents, have been used in cigarette smoking studies. The advent of Electronic-cigarettes (ECs) could herald a further escalation, with data from in-vivo experiments already increasingly published. The current study aims to demonstrate the application of a human in-vitro model for evaluation of EC, providing alternatives to the outdated in-vivo models. The human airways model consists of relevant cell types that would be directly encountered during vaping. Human bronchial epithelial cells and pulmonary fibroblasts were co-cultured at air-liquid interface (ALI) under conditions that promote mucociliary differentiation, tight junction formation and mucin production. An in-house built smoking machine was used to deliver vapour from a commercially available EC (ECV) or whole cigarette smoke (WCS) to the co-culture model according to ISO standard. This methodology closely mimics human smoking behaviour, as opposed to enforced nasal inhalation in rodent smoking/vaping model. 24h post exposure, XTT cell viability analysis showed that WCS caused a significant decrease (p<0.0001) in cell viability (<70%) compared to control cells exposed to air only. ECV on the other hand did not have a significant impact on cell viability, thus suggesting low cytotoxicity. This difference in effect correlates with a number of existing in-vitro and in-vivo ECV/WCS studies, illustrating that the current model is a relevant, more realistic platform for EC studies compared to animal models. Further, such an airways model resembling in-vivo physiology can be used to study COPD progression and development, a condition difficult to replicate in rodents.
Original languageEnglish
PagesP20
Publication statusPublished - 2016
EventAnimal Replacement Science Conference 2016: Advances, Awareness, Applications - London, United Kingdom
Duration: 9 Dec 2016 → …

Conference

ConferenceAnimal Replacement Science Conference 2016
CountryUnited Kingdom
CityLondon
Period9/12/16 → …

Fingerprint Dive into the research topics of 'Towards an in-vitro multi-cellular human airways model for evaluating the effects of Electronic cigarettes'. Together they form a unique fingerprint.

  • Research Output

    The development of a dynamically perfused system for models of the human airways, with automated feeding and sampling capability

    Leslie, L. J., Lloyd, H. & Marshall, L. J., 2016, p. P11.

    Research output: Contribution to conferencePoster

  • Cite this

    Vasanthi Bathri Narayanan, P., Leslie, L. J., Brown, J. E., & Marshall, L. J. (2016). Towards an in-vitro multi-cellular human airways model for evaluating the effects of Electronic cigarettes. P20. Poster session presented at Animal Replacement Science Conference 2016, London, United Kingdom.