Towards OPM-MEG in a virtual reality environment

Gillian Roberts, Niall Holmes, Nicholas Alexander, Elena Boto, James Leggett, Ryan M. Hill, Vishal Shah, Molly Rea1 Rea, Richard Vaughan, Eleanor A. Maguire, Klaus Kessler, Shaun Beebe, Mark Fromhold, Gareth R. Barnes, Richard Bowtell, Matthew J. Brookes

Research output: Contribution to journalArticlepeer-review

Abstract

Virtual reality (VR) provides an immersive environment in which a participant can experience a feeling of presence in a virtual world. Such environments generate strong emotional and physical responses and have been used for wide-ranging applications. The ability to collect functional neuroimaging data whilst a participant is immersed in VR would represent a step change for experimental paradigms; unfortunately, traditional brain imaging requires participants to remain still, limiting the scope of naturalistic interaction within VR. Recently however, a new type of magnetoencephalography (MEG) device has been developed, that employs scalp-mounted optically-pumped magnetometers (OPMs) to measure brain electrophysiology. Lightweight OPMs, coupled with precise control of the background magnetic field, enables participant movement during data acquisition. Here, we exploit this technology to acquire MEG data whilst a participant uses a virtual reality head-mounted display (VRHMD). We show that, despite increased magnetic interference from the VRHMD, we were able to measure modulation of alpha-band oscillations, and the visual evoked field. Moreover, in a VR experiment in which a participant had to move their head to look around a virtual wall and view a visual stimulus, we showed that the measured MEG signals map spatially in accordance with the known organisation of primary visual cortex. This technique could transform the type of neuroscientific experiment that can be undertaken using functional neuroimaging.

Original languageEnglish
Pages (from-to)408-417
Number of pages10
JournalNeuroimage
Volume199
Early online date4 Jun 2019
DOIs
Publication statusPublished - 1 Oct 2019

Bibliographical note

Creative Commons Attribution 4.0 International (CC BY 4.0)

Funding: Wellcome Collaborative Award in Science (203257/Z/16/Z and 203257/B/16/Z), UK Quantum Technology Hub for Sensors and Metrology, Engineering and Physical Sciences Research Council (EP/M013294/1), Engineering and Physical Sciences Research Council (EPSRC) and Medical Research Council (MRC)(grant number EP/L016052/1), Oxford Nottingham Biomedical Imaging EPSRC and MRC Centre for Doctoral Training.

Fingerprint Dive into the research topics of 'Towards OPM-MEG in a virtual reality environment'. Together they form a unique fingerprint.

Cite this