Transformation from Conventional Dissipative Solitons to Amplifier Similaritons in All-Normal Dispersion Mode-Locked Fiber Lasers

Yueqing Du, Xuewen Shu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We report the numerical demonstration of the transformation from dissipative solitons to amplifier similaritons in an all-normal dispersion ultrafast fiber laser for the first time. Different from the strong spectral filtering as well as large spectral and temporal breathing ratios for the typical amplifier similariton fiber lasers, our case has relatively weak spectral filtering and small spectral and temporal breath ratios (<6) for amplifier similaritons. An intermediate state between the dissipative soliton and amplifier similariton is discovered, which we call 'dissipative similariton' considering its shaping mechanism and characteristics. Pulse regime dynamics is thoroughly explored. The chirp evolution together with pulse structures in time and frequency domains can be used to distinguish the three pulse regimes. This paper can enrich the pulse dynamics in all-normal dispersion fiber lasers and help one to properly design high-energy ultrafast laser configurations.

Original languageEnglish
Article number8269250
JournalIEEE Photonics Journal
Volume10
Issue number1
Early online date25 Jan 2018
DOIs
Publication statusPublished - 7 Feb 2018

Bibliographical note

© 2018 IEEE.Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Keywords

  • Fiber lasers
  • mode-locked lasers
  • solitons and polaritons

Fingerprint

Dive into the research topics of 'Transformation from Conventional Dissipative Solitons to Amplifier Similaritons in All-Normal Dispersion Mode-Locked Fiber Lasers'. Together they form a unique fingerprint.

Cite this