Abstract
The purpose of the study is to demonstrate a new method of Stokes-correlometric evaluation of polarization-inhomogeneous images of optically thin (optical thickness smaller than 0.01) histological sections from optically anisotropic biological tissues of different morphological structure. This method is based on a correlation ('two-point') generalization of traditional optical methods for analyzing 'one-point' distributions of polarization states of microscopic images of biological tissues. Analytical algorithms are obtained for describing the 'two-point' complex parameters of the Stokes vector image of a birefringent biological tissue. An experimental technique has been developed for measuring polarization-correlation maps, i.e. the coordinate distributions of the magnitude and phase of the 'two-point' Stokes vector parameters. Within the framework of the statistical and correlation analysis of the obtained data, new quantitative criteria for the differentiation of the optical properties of biological tissues of various morphological structures are found. A comparative analysis of the distribution of the 'single-point' and 'two-point' parameters of the Stokes vector of polarizationally inhomogeneous images was performed. It revealed a higher sensitivity (2-5 times) of the Stokes-correlometry method to variations in orientation-phase structure of biological tissues compared to the single-point approach.
Original language | English |
---|---|
Article number | 395401 |
Journal | Journal of Physics D: Applied Physics |
Volume | 53 |
Issue number | 39 |
Early online date | 21 May 2020 |
DOIs | |
Publication status | Published - 6 Jul 2020 |
Bibliographical note
Original content from this work may be used under the termsof the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.
Funding: This work received funding from the European Union’s Horizon 2020 research and innovation program under the Marie
Sklodowska-Curie (grant agreement No 713606, MP); Academy of Finland (grants 326204 and 325097, IM and 314369,
AP), INFOTECH grant project (IM), MEPhI Academic Excellence Project (Contract No. 02.a03.21.0005, IM), and National
Research Tomsk State University Academic D.I. Mendeleev Fund Program (IM).