Vector rogue waves in a carbon nanotube mode-locked fiber laser

Research output: Chapter in Book/Published conference outputConference publication

Abstract

Summary form only given. Mechanisms of rogue waves (RWs) emergence have been extensively studied in fiber lasers with nonlinearly driven cavities [1], Raman fiber amplifiers and lasers [2], and fiber lasers via modulation of the pump [3]. Previously, it has been found that RWs can be emerged because of soliton-soliton interaction through the overlapping of their tails or soliton-dispersive wave interaction. The result of these interactions is a coupling enhancement that leads to chaotic pulse bunching in the form of soliton rain at the time scale of a round-trip time in a high pump power (800 mW) [4]. Such interaction can be controlled by the pump power modulation or/and by injecting a weak seeding signal and noise. Here, we report for the first time the observation of the soliton rain and soliton-soliton interaction that leads to the optical rogue wave emergence in a carbon nano-tube saturable absorber mode-locked fiber laser at low pump power (140mW) without pump modulation or injecting a weak signal and noise to the laser cavity. As we shown recently [5] that by tuning the interaction of two orthogonal-states of polarization (SOP) of the in-cavity birefringent and also the pump SOP whereas the polarization instability leading to the emergence of different optical RW events.
Original languageEnglish
Title of host publicationProceedings of the European Quantum Electronics Conference, EQEC 2017
VolumePart F81-EQEC 2017
ISBN (Electronic)9781557528209
DOIs
Publication statusPublished - 30 Oct 2017
EventEuropean Quantum Electronics Conference, EQEC 2017 - Munich, Germany
Duration: 25 Jun 201729 Jun 2017

Conference

ConferenceEuropean Quantum Electronics Conference, EQEC 2017
Country/TerritoryGermany
CityMunich
Period25/06/1729/06/17

Bibliographical note

Copyright © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Fingerprint

Dive into the research topics of 'Vector rogue waves in a carbon nanotube mode-locked fiber laser'. Together they form a unique fingerprint.

Cite this