A comparison between static and kinetic visual attention as a means of detecting age-related deterioration of the visual system and driving performance

  • Nicola R. Phelps

Student thesis: Doctoral ThesisDoctor of Philosophy


A critical review of previous research revealed that visual attention tests, such as the Useful Field of View (UFOV) test, provided the best means of detecting age-related changes to the visual system that could potentially increase crash risk. However, the question was raised as to whether the UFOV, which was regarded as a static visual attention test, could be improved by inclusion of kinetic targets that more closely represent the driving task. A computer program was written to provide more information about the derivation of UFOV test scores. Although this investigation succeeded in providing new information, some of the commercially protected UFOV test procedures still remain unknown. Two kinetic visual attention tests (DRTS1 and 2), developed at Aston University to investigate inclusion of kinetic targets in visual attention tests, were introduced. The UFOV was found to be more repeatable than either of the kinetic visual attention tests and learning effects or age did not influence these findings. Determinants of static and kinetic visual attention were explored. Increasing target eccentricity led to reduced performance on the UFOV and DRTS1 tests. The DRTS2 was not affected by eccentricity but this may have been due to the style of presentation of its targets. This might also have explained why only the DRTS2 showed laterality effects (i.e. better performance to targets presented on the left hand side of the road). Radial location, explored using the UFOV test, showed that subjects responded best to targets positioned to the horizontal meridian. Distraction had opposite effects on static and kinetic visual attention. While UFOV test performance declined with distraction, DRTS1 performance increased. Previous research had shown that this striking difference was to be expected. Whereas the detection of static targets is attenuated in the presence of distracting stimuli, distracting stimuli that move in a structured flow field enhances the detection of moving targets. Subjects reacted more slowly to kinetic compared to static targets, longitudinal motion compared to angular motion and to increased self-motion. However, the effects of longitudinal motion, angular motion, self-motion and even target eccentricity were caused by target edge speed variations arising because of optic flow field effects. The UFOV test was more able to detect age-related changes to the visual system than were either of the kinetic visual attention tests. The driving samples investigated were too limited to draw firm conclusions. Nevertheless, the results presented showed that neither the DRTS2 nor the UFOV tests were powerful tools for the identification of drivers prone to crashes or poor driving performance.
Date of Award2001
Original languageEnglish
SupervisorMark Dunne (Supervisor)


  • static
  • kinetic
  • visual attention
  • detecting
  • age-related deterioration
  • visual system
  • driving performance

Cite this