A study of the calcium-induced morphological transistions of human erythrocytes

  • Jacqueline L. Whatmore

Student thesis: Doctoral ThesisDoctor of Philosophy

Abstract

An examination was made of the morphological transitions induced in human erythrocytes by the elevation of cytosolic calcium, and of the biochemical mechanisms responsible. The loss of the discocyte morphology and the sequential progression of cells through the echinocyte stages 1, 2, 3 and sphereo-echinocyte was found to occur in both a calcium concentration- and a time-dependent manner.
SDS-PAGE analysis of cytoskeletal proteins prepared from intact cells loaded with 150uM or 1mM calcium revealed the partial proteolytic loss of proteins 2.1, 2.2 and 4.1. The rate of proteolysis was not paralleled by that of echinocytosis, making a causative relationship unlikely. Cytoskeletal integrity did appear to influence shape reversal from the echinocyte to the discocyte morphology after removal of the calcium and ionophore A23187. The loss of 80% protein 4.1, 40% 2.1 and 30% 2.2 was associated with, although not necessarily the sole cause, of irreversible sphereo-echinocytosis. Pre-treatment of cells with wheat germ agglutinin preserved the discocyte morphology despite continued cytoskeletal proteolysis during calcium-loading.
All observations were made on cells incubated either in the presence or absence of glycolytic substrates, effectively altering cell metabolic status. This influenced the rate of progression of cells through the echinocyte stages, the rate of proteolysis of cytoskeletal proteins, and the extent and kinetics of shape reversal from cells transformed to the sphereo-echinocyte morphology. The stage 1 to discocyte transition was the rate limiting step of this shape recovery. In contrast the rate of loss of the discocyte morphology was independent of cell metabolic status during exposure to calcium, as was the extent of restoration of the discocyte morphology from cells transformed to stage 1 echinocytes. An hypothesis is presented that echinocytosis is a discontinuous process with discrete steps initiated by different biochemical mechanisms varying in their dependence on metabolic energy.
Date of AwardOct 1991
Original languageEnglish
SupervisorJohn A. Hickman (Supervisor)

Keywords

  • erythrocyte shape
  • calcium
  • proteolysis
  • cytoskeletal proteins

Cite this

'