Biomimetic synthetic lubricants (Biosurfactants)

  • Nadia Rasul

Student thesis: Master's ThesisMaster of Philosophy


Poly(styrene-co-maleic anhydride) (PSMA) based copolymers are known to undergo conformational transition in response to environmental stimuli. This smart behaviour makes it possible to mimic the behaviour of native apoproteins. The primary aim of this study was to develop a better understanding of the structure-property relationships of various PSMA-based copolymers sought. The work undertaken in this thesis has revealed that the responsive behaviour of PSMA-based copolymers can be tailored by varying the molecular weight, hydrophobic (styrene) and hydrophilic (maleic acid) balance, and more so in the presence of additional hydrophobic, mono-partial ester moieties. Novel hydrophilic and hydrophobic synthetic surfactant protein analogues have successfully been prepared. These novel lipid solubilising agents possess a broad range of HLB (hydrophilic-lipophilic balance) values that have been estimated. NMR spectroscopy was utilised to confirm the structures for PSMA-based copolymers sought and proved useful in furthering understanding of the structure-property relationships of PSMA-based copolymers. The association of PSMA with the polar phospholipid, 2-dilauryl-sn-glycero-3- phosphocholine (DLPC) produces polymer-lipid complexes analogous to lipoprotein assemblies present in the blood plasma. NMR analysis reveals that the PSMA-based copolymers are not perfectly alternating. Regio-irregular structures, atactic and random monomer sequence distribution have been identified for all materials studied. Novel lipid solubilising agents (polyanionic surfactants) have successfully been synthesised from a broad range of PSMA-based copolymers with desired estimated HLB values that interact with polar phospholipids (DLPC/DPPC) uniquely. Very low static and dynamic surface tensions have been observed via the du Noϋy ring method and Langmuir techniques and correlate well with the estimated HLB values. Synthetic protein-lipid analogues have been successfully synthesised, that mimic the unique surface properties of native biological lubricants without the use of solvents.
The novel PSMA-DLPC complexes have successfully been combined with hyaluronan (hyaluronic acid, HA). Today, the employment of HA is economically feasible, because it is readily available from bacterial fermentation processes in a thermally stable form - HyaCare®. The work undertaken in this thesis highlights the usage of HA in biolubrication applications and how this can be optimised and thus justified by carefully selecting the biological source, concentration, molecular weight, purity and most importantly by combining it with compatible boundary lubricating agents (polar phospholipids). Experimental evidence supports the belief that the combined HA and PSMA-DLPC complexes provide a balance of rheological, biotribological and surface properties that are composition dependent, and show competitive advantage as novel synthetic biological lubricants (biosurfactants).
Date of Award24 Jul 2015
Original languageEnglish
Awarding Institution
  • Aston University
SupervisorBrian Tighe (Supervisor)


  • hyaluronan
  • poly(styrene-co-maleic anhydride)
  • Langmuir trough
  • brewster angle microscopy
  • NMR spectroscopy

Cite this