The use of digital communication systems is increasing very rapidly. This is due to lower system implementation cost compared to analogue transmission and at the same time, the ease with which several types of data sources (data, digitised speech and video, etc.) can be mixed. The emergence of packet broadcast techniques as an efficient type of multiplexing, especially with the use of contention random multiple access protocols, has led to a wide-spread application of these distributed access protocols in local area networks (LANs) and a further extension of them to radio and mobile radio communication applications. In this research, a proposal for a modified version of the distributed access contention protocol which uses the packet broadcast switching technique has been achieved. The carrier sense multiple access with collision avoidance (CSMA/CA) is found to be the most appropriate protocol which has the ability to satisfy equally the operational requirements for local area networks as well as for radio and mobile radio applications. The suggested version of the protocol is designed in a way in which all desirable features of its precedents is maintained. However, all the shortcomings are eliminated and additional features have been added to strengthen its ability to work with radio and mobile radio channels. Operational performance evaluation of the protocol has been carried out for the two types of non-persistent and slotted non-persistent, through mathematical and simulation modelling of the protocol. The results obtained from the two modelling procedures validate the accuracy of both methods, which compares favourably with its precedent protocol CSMA/CD (with collision detection). A further extension of the protocol operation has been suggested to operate with multichannel systems. Two multichannel systems based on the CSMA/CA protocol for medium access are therefore proposed. These are; the dynamic multichannel system, which is based on two types of channel selection, the random choice (RC) and the idle choice (IC), and the sequential multichannel system. The latter has been proposed in order to supress the effect of the hidden terminal, which always represents a major problem with the usage of the contention random multiple access protocols with radio and mobile radio channels. Verification of their operation performance evaluation has been carried out using mathematical modelling for the dynamic system. However, simulation modelling has been chosen for the sequential system. Both systems are found to improve system operation and fault tolerance when compared to single channel operation.
Date of Award | Dec 1989 |
---|
Original language | English |
---|
Awarding Institution | |
---|
Supervisor | R.L. Brewster (Supervisor) |
---|
- local area data communication networks
- computer communications
- mobile radio communications
- modelling and simulation
- random multiple access protocols
Digital communication networks incorporating mobile data terminals
Glass, A. M. (Author). Dec 1989
Student thesis: Doctoral Thesis › Doctor of Philosophy