Fibre Bragg grating strain sensors

  • Richard W. Fallon

    Student thesis: Doctoral ThesisDoctor of Philosophy


    The fabrication of in-fibre Bragg gratings (FBGs) and their application as sensors is reported. The strain and temperature characteristic results for a number of chirped and uniform gratings written into three different host fibres are presented. The static and dynamic temperature response of a commercially available temperature compensated grating is reported. A five sensor wavelength division multiplexed fibre Bragg grating strain measurement system with an interrogation rate of 25 Hz and resolution of 10 was constructed. The results from this system are presented. A novel chirped FBG interrogation method was implemented in both the 1.3 and 1.5 m telecommunication windows. Several single and dual strain sensor systems, employing this method, were constructed and the results obtained from each are reported and discussed. These systems are particularly suitable for the measurement of large strain. The results from a system measuring up to 12 m and with a potential measurement range of 30 m are reported. This technique is also shown to give an obtainable resolution of 20 over a measurement range of 5 000 for a dual sensor system. These systems are simple, robust, passive and easy to implement. They offer low cost, high speed and, in the case of multiple sensors, truly simultaneous interrogation. These advantages make this technique ideal for strain sensing in SMART structures. Systems based on this method have been installed in the masts of four superyachts. A system, based on this technique, is currently being developed for the measurement of acoustic waves in carbon composite panels. The results from an alternative method for interrogating uniform FBG sensors are also discussed. Interrogation of the gratings was facilitated by a specifically written asymmetric grating which had a 15 nm long linearly sloped spectral edge. This technique was employed to interrogate a single sensor over a measurement range of 6 m and two sensors over a range of 4.5 me. The results obtained indicated achievable resolutions of 47 and 38 respectively.
    Date of Award2000
    Original languageEnglish


    • fibre bragg grating
    • strain sensors

    Cite this