Folate metabolism in the female weanling rat

  • Mohinderjeet S. Surdhar

    Student thesis: Doctoral ThesisDoctor of Philosophy


    The metabolism of a mixture of [2-14C] and [3',5',7,9-3H] folic acid was studied in female weanling rats. Intact folates and folate catabolites were excreted in the urine. Folate polyglutamates were found in the tissues. Rats treated with the oestrogen diethylstilbestrol and 17 -ethynyloestradiol exhibited marked changes in the metabolic handling of folic acid and folate catabolism was greatly increased compared to controls. Allopurinol treatment gave greater label retention in the gut, with a substantial increase in catabolism compared to normals. A dose response relationship was illustrated between allopurinol dose and folate catabolism. After lead acetate dosing there was little radioactivity in the urine and tissues over 72h and more radioactivity was retained in the faeces compared to normals. Excretion of intact folates was depressed, especially 5MeTHF and 10CHOTHF. A tenfold increase in both lead and folic acid dosage resulted in an even further decrease of radioactivity in the tissues and urine over 72h. Excretion in the faeces was further elevated. Ferrous sulphate administration resulted in increased catabolism. The retention of radioactivity in the liver, kidney and gut was greatly reduced. A new method of folate analysis; Sephadex LH-20 was introduced. In vitro superoxide anion formation was illustrated using an allopurinol/xanthine oxidase system. Histological studies were employed to qualitatively and quantitatively illustrate the oxidative status in livers and brains of allopurinol and ferrous sulphate dosed rats. Increased dose related formazan deposition was observed when livers of pretreated animals were incubated with nitroblue tetrazolium. Formazan deposition was reduced in pretreated animals also treated with the anti-oxidants vitamin E, mannitol or 4-hydroxy-methyl-4,6-ditertiary-butylphenol. A possible route of folate catabolism is scission by a non-enzymic oxidation involving active oxygen species.
    Date of Award1987
    Original languageEnglish


    • Folate metabolism
    • female weanling rat

    Cite this