Improving recombinant human adenosine A2A receptor production in yeast

  • Zharain Bawa

Student thesis: Doctoral ThesisDoctor of Philosophy

Abstract

Over 50% of clinically-marketed drugs target membrane proteins; in particular G protein-coupled receptors (GPCRs). GPCRs are vital to living cells, performing an active role in many processes, making them integral to drug development. In nature, GPCRs are not sufficiently abundant for research and their structural integrity is often lost during extraction from cell membranes.
The objectives of this thesis were to increase recombinant yield of the GPCR, human adenosine A2A receptor (hA2AR) by investigating bioprocess conditions in large-scale Pichia pastoris and small-scale Saccharomyces cerevisiae cultivations. Extraction of hA2AR from membranes using novel polymers was also investigated.
An increased yield of hA2AR from P. pastoris was achieved by investigating the methanol feeding regime. Slow, exponential feed during induction (μlow) was compared to a faster, exponential feed (μhigh) in 35 L pilot-scale bioreactors. Overall hA2AR yields were increased for the μlow cultivation (536.4pmol g-1) compared to the μhigh148.1 pmol g-1. hA2AR levels were maintained in cytotoxic methanol conditions and unexpectedly, pre-induction levels of hA2AR were detected. Small-scale bioreactor work showed that Design of Experiments (DoE) could be applied to screen for bioprocess conditions to give optimal hA2AR yields. Optimal conditions were retrieved for S. cerevisiae using a d-optimal screen and response surface methodology. The conditions were 22°C, pH 6.0, 30% DO without dimethyl sulphoxide. A polynomial equation was generated to predict hA2AR yields if conditions varied.
Regarding the extraction, poly (maleic anhydride-styrene) or PMAS was successful in solubilising hA2AR from P. pastoris membranes compared with dodcecyl-β-D-maltoside (DDM) detergent. Variants of PMAS worked well as solubilising agents with either 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or cholesteryl hemisuccinate (CHS). Moreover, esterification of PMAS improved solubilisation, suggesting that increased hydrophobicity stabilises hA2AR during extraction.
Overall, hA2AR yields were improved in both, P. pastoris and S. cerevisiae and the use of novel polymers for efficient extraction was achieved.

Date of Award25 Jun 2014
Original languageEnglish
SupervisorRoslyn Bill (Supervisor)

Keywords

  • yeast
  • human adenosine A2A receptor
  • methanol-induction
  • poly (maleic anhydride-styrene)
  • design of experiements

Cite this

'