Measurement of ocular component contributions to residual astigmatism in adult human eyes

  • Mohamed E.A. Elawad

Student thesis: Doctoral ThesisDoctor of Philosophy


The aim of this study was to determine whether an ophthalmophakometric technique could offer a feasible means of investigating ocular component contributions to residual astigmatism in human eyes.
Current opinion was gathered on the prevalence, magnitude and source of residual astigmatism. It emerged that a comprehensive evaluation of the astigmatic contributions of the eye's internal ocular surfaces and their respective axial separations (effectivity) had not been carried out to date.
An ophthalmophakometric technique was developed to measure astigmatism arising from the internal ocular components. Procedures included the measurement of refractive error (infra-red autorefractometry), anterior corneal surface power (computerised video keratography), axial distances (A-scan ultrasonography) and the powers of the posterior corneal surface in addition to both surfaces of the crystalline lens (multi-meridional still flash ophthalmophakometry).
Computing schemes were developed to yield the required biometric data. These included (1) calculation of crystalline lens surface powers in the absence of Purkinje images arising from its anterior surface, (2) application of meridional analysis to derive spherocylindrical surface powers from notional powers calculated along four pre-selected meridians, (3) application of astigmatic decomposition and vergence analysis to calculate contributions to residual astigmatism of ocular components with obliquely related cylinder axes, (4) calculation of the effect of random experimental errors on the calculated ocular component data.
A complete set of biometric measurements were taken from both eyes of 66
undergraduate students. Effectivity due to corneal thickness made the smallest cylinder power contribution (up to 0.25DC) to residual astigmatism followed by contributions of the anterior chamber depth (up to 0.50DC) and crystalline lens thickness (up to 1.00DC). In each case astigmatic contributions were predominantly direct. More astigmatism arose from the posterior corneal surface (up to 1.00DC) and both crystalline lens surfaces (up to 2.50DC). The astigmatic contributions of the posterior corneal and lens surfaces were found to be predominantly inverse whilst direct astigmatism arose from the anterior lens surface. Very similar results were found for right versus left eyes and males versus females.
Repeatability was assessed on 20 individuals. The ophthalmophakometric method was found to be prone to considerable accumulated experimental errors. However, these errors are random in nature so that group averaged data were found to be reasonably repeatable. A further confirmatory study was carried out on 10 individuals which demonstrated that biometric measurements made with and without cycloplegia did not differ significantly.
Date of AwardJul 1995
Original languageEnglish
SupervisorMark Dunne (Supervisor)


  • human
  • ocular biometry
  • residual astigmatism
  • ocular components
  • ophthalmophakometry

Cite this