Phase equilibrium studies at moderate pressures

  • Husni K. Zain

Student thesis: Doctoral ThesisDoctor of Philosophy

Abstract

The theory of vapour-liquid equilibria is reviewed, as is the present status or prediction methods in this field. After discussion of the experimental methods available, development of a recirculating equilibrium still based on a previously successful design (the modified Raal, Code and Best still of O'Donnell and Jenkins) is described. This novel still is designed to work at pressures up to 35 bar and for the measurement of both isothermal and isobaric vapour-liquid equilibrium data.
The equilibrium still was first commissioned by measuring the saturated vapour pressures of pure ethanol and cyclohexane in the temperature range 77-124°C and 80-142°C respectively. The data obtained were compared with available literature experimental values and with values derived from an extended form of the Antoine equation for which parameters were given in the literature.
Commissioning continued with the study of the phase behaviour of mixtures of the two pure components as such mixtures are strongly non-ideal, showing azeotopic behaviour. Existing data did not exist above one atmosphere pressure. Isothermal measurements were made at 83.29°C and 106.54°C, whilst isobaric measurements were made at pressures of 1 bar, 3 bar and 5 bar respectively.
The experimental vapour-liquid equilibrium data obtained are assessed by a standard literature method incorporating a themodynamic consistency test that minimises the errors in all the measured variables. This assessment showed that reasonable x-P-T data-sets had been measured, from which y-values could be deduced, but that the experimental y-values indicated the need for improvements in the design of the still.
The final discussion sets out the improvements required and outlines how they might be attained.
Date of AwardOct 1992
Original languageEnglish
SupervisorJ.D. Jenkins (Supervisor)

Keywords

  • equilibrium still
  • experimental determination
  • moderate pressures
  • saturated vapour pressure
  • vapour-liquid equilibrium

Cite this

'