The mechanical and wear behaviour of B(SiC) fibre-reinforced composite materials

  • Yusuf Sahin

Student thesis: Doctoral ThesisDoctor of Philosophy

Abstract

The mechanical properties and wear behaviour of B(SiC) fibre-reinforced metal matrix composites (MMCs) and aluminium alloy (2014) produced by metal infiltration technique were determined. Tensile tests were peliormed at different conditions on both the alloy matrix and its composite, and the tensile fracture surfaces were also examined by Scanning Electron Microscopy (SEM). Dry wear of the composite materials sliding on hardened steel was studied using a pin-on-disc type machine. The effect of fibre orientation on wear rate
was studied to provide wear resistance engineering data on the MMCs. Tests were carried out with the wear surface sliding direction set normal, parallel and anti-parallel to the fibre axis. Experiments were perfonned for sliding speeds of 0.6, 1.0 and 1.6 m/s for a load range from 12 N to 60 N. A number of sensitive techniques were used to examine worn surface and debris, i.e: Scanning Electron Microscopy (SEM), Backscattered Electron Microscopy (BSEM) and X-ray Photoelectron Spectroscopy (XPS). Finally, the effect of fibre orientation on the wear rate of the Borsic-reinforced plastic matrix composites (PMCs)
produced by hot pressing technique was also investigated under identical test conditions. It was found that the composite had a markedly increased tensile strength compared with the matrix. The wear results also showed that the composite exhibited extremely low wear rates compared to the matrix material and the wear rate increased with increasing sliding speed and normal load. The effect of fibre orientation was marked, the lowest wear rates were obtained by arranging the fibre perpendicular to the sliding surface, while the highest wear was obtained for the parallel orientation. The coefficient of friction was found
to be lowest in the parallel orientation than the others. Wear of PMCs were influenced to the greatest extent by these test parameters although similar findings were obtained for both composites. Based on the results of analyses using SEM, BSED and XPS, possible wear mechanisms are suggested to explain the wear of these materials.
Date of AwardDec 1994
Original languageEnglish

Keywords

  • mechanical
  • wear behaviour of B(SiC) fibre-reinforced composite materials

Cite this

'