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Pericytes are a heterogeneous population of mesenchymal cells located on the
abluminal surface of microvessels, where they provide structural and biochemical
support. Pericytes have been implicated in numerous lung diseases including
pulmonary arterial hypertension (PAH) and allergic asthma due to their ability to
differentiate into scar-forming myofibroblasts, leading to collagen deposition and
matrix remodelling and thus driving tissue fibrosis. Pericyte-extracellular matrix
interactions aswell as other biochemical cues play crucial roles in these processes.
In this review, we give an overview of lung pericytes, the key pro-fibroticmediators
they interact with, and detail recent advances in preclinical studies on how
pericytes are disrupted and contribute to lung diseases including PAH, allergic
asthma, and chronic obstructive pulmonary disease (COPD). Several recent
studies using mouse models of PAH have demonstrated that pericytes
contribute to these pathological events; efforts are currently underway to
mitigate pericyte dysfunction in PAH by targeting the TGF-β, CXCR7, and
CXCR4 signalling pathways. In allergic asthma, the dissociation of pericytes
from the endothelium of blood vessels and their migration towards inflamed
areas of the airway contribute to the characteristic airway remodelling observed in
allergic asthma. Although several factors have been suggested to influence this
migration such as TGF-β, IL-4, IL-13, and periostin, recent evidence points to the
CXCL12/CXCR4 pathway as a potential therapeutic target. Pericytes might also
play an essential role in lung dysfunction in response to ageing, as they are
responsive to environmental risk factors such as cigarette smoke and air
pollutants, which are the main drivers of COPD. However, there is currently no
direct evidence delineating the contribution of pericytes to COPD pathology.
Although there is a lack of human clinical data, the recent available evidence
derived from in vitro and animal-based models shows that pericytes play
important roles in the initiation and maintenance of chronic lung diseases and
are amenable to pharmacological interventions. Therefore, further studies in this
field are required to elucidate if targeting pericytes can treat lung diseases.
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1 Introduction

The lung is a crucial organ that consists of dozens of different
cell populations involved in physiological processes such as gas
exchange, immunity and inflammation, detoxification, and tissue
repair. These cell types include epithelial cells, nerve cells,
endothelial cells, immune cells, and several types of mesenchymal
cells. The lung has a significant capacity for regeneration as a result
of the proliferation and differentiation of progenitor cell types in
response to injury (Kotton andMorrisey, 2014). One such cell type is
the poorly understood and often forgotten pericyte.

Pericytes are a heterogeneous population of mesenchymal cells
found within the abluminal surface of blood vessels in several tissues
including the lung (Armulik et al., 2011; Shammout and Johnson,
2019). They are embedded within the basement membrane and
associate closely with endothelial cells by three types of intercellular
junctions: peg-socket type, gap junctions, and adhesion plaques
(Caruso et al., 2009; Zhang et al., 2020).

Pericytes are emerging as an increasingly attractive cell type due
to their essential roles in vascular homeostasis and remodelling, as
well as in tissue injury, disease, and repair (Hung et al., 2019).
Studies have shown that pericytes are essential to life, as the absence
of pericytes in mice results in vascular leakage and embryonic
lethality (Hellström et al., 2001). As well as preventing vascular
leakage, pericytes provide structural support to capillaries and
regulate contraction and vessel diameter to mediate blood
pressure (pericytes expressing the contractile myofilaments α-
smooth muscle actin (α-SMA) and SM22) (Bergers and Song,
2005; Hamilton et al., 2010; Barron et al., 2016; Shammout and
Johnson, 2019). In addition, pericytes regulate processes such as
angiogenesis, endothelial cell regulation, and immune surveillance
(Hamilton et al., 2010). Therefore, it is inevitable that dysregulation
of this cell type can contribute to lung diseases where pericyte-
endothelial cell interactions are disrupted.

2 Lung pericytes

In the lung, pericytes are fundamental to maintaining the health
and function of the pulmonary vasculature and thus are critical to
optimal gas exchange. Depending on their location in the vascular
tree (artery, capillary, or vein), pericytes control vascular tone,
secrete extracellular matrix (ECM) components, regulate
leukocyte extravasation, and produce mediators that maintain
vascular homeostasis and angiogenesis (Shammout and Johnson,
2019). However, under conditions of acute or sustained
inflammation, pericytes can also contribute to pulmonary
pathology, as they are exquisitely sensitive to pro-inflammatory
and pro-fibrotic mediators. This aberrant tissue microenvironment
has been shown to induce pericyte uncoupling from the vessels,
followed by their differentiation into myofibroblasts and
remodelling of the ECM, thereby contributing to tissue fibrosis
(Johnson et al., 2015; Bignold et al., 2022).

Due to their heterogeneous nature, it has proven a difficult task
to characterize pericytes with definite markers owing to the difficulty
in establishing robust isolation methods. This is due to differences in
cell morphology as well as molecular diversity. Therefore, when
isolating pericytes, it is essential to carefully choose markers to

exclude similar cell types. The conventional methods used to assess
the phenotype of pericytes and distinguish them from vascular
smooth muscle cells (vSMC), fibroblasts, or other mesenchymal
cells include flow cytometry (FACS) and immunohistochemistry
(Khan et al., 2021; West et al., 2021). Reverse transcription
polymerase chain reaction (RT-PCR) has also been used to
compare levels of expression of gene markers, with some
studies comparing pericytes markers to those of bone marrow-
derived mesenchymal stem cells (MSCs) (Bagley et al., 2006; Wilson
et al., 2018; Bordenave et al., 2020b; Li et al., 2021; Meng et al., 2021).

2.1 Lung pericyte markers

In the human lung, the most common markers used to
characterize pericytes are positive markers platelet-derived
growth factor receptor-β (PDGFRβ) and proteoglycan neural glial
antigen-2 (NG2 or chondroitin sulphate proteoglycan 4, CSPG4),
and negative markers CD31 and CD45 (Cho et al., 2003; Yuan et al.,
2015; Wilson et al., 2018). Other markers used to identify pericytes
from various sources and species include regulator of G-protein
signalling 5 (RGS5), 3G5, CD146, CD90/thymus cell antigen 1,
calponin, and intermediate filaments such as desmin and vimentin
(Cho et al., 2003; Yuan et al., 2015; Hung et al., 2019).

Within the lung, other resident mesenchymal cells such as
fibroblasts share a similar morphology and also express markers
associated with pericytes including CD73, CD90, CD44, PDGFRα,
and endoglin/CD105 (Barron et al., 2016; Hung et al., 2019).
Pulmonary pericytes have also been found to highly express
markers which are also expressed by MSCs such as the integrins
CD29 and CD49a, and also express CD47, CD105, CD266 and Ly-
51, and lysosomal degranulation markers CD107a and CD107b
(Bignold et al., 2022). Fibroblasts are particularly difficult to
differentiate from pericytes as there is a universal lack of specific
markers isolating mural cells from fibroblasts, which complicates
cell discrimination and in situ expression analysis (Muhl et al.,
2020). Recent efforts to distinguish pericytes from other cell types
have involved the single-cell RNA sequencing (scRNA-seq) analysis
of fibroblasts, smooth muscle cells (SMCs), and pericytes. These
studies have built foundations in the form of gene marker databases
for molecular signatures of pericytes in different organs. These
studies confirm a greater heterogeneity within pericytes
compared to SMCs and considerable organotypicity (Muhl et al.,
2020).

The markers used to characterise pericytes vary depending on
the location of the cell–in terms of organotypicity, there are clear
differences between brain pericytes and lung pericytes
(Vanlandewijck et al., 2018). Pericytes are also specific on the
vascular level and are affected by biological processes such as
angiogenesis and vascular remodelling, developmental and
disease states, as well as in vitro cell culture conditions
(Armulik et al., 2011). For example, depending on their
location, pericytes contain different cytoskeletal features.
Pericytes that wrap around the capillary vessels of the
mesentery are negative for α-SMA; however, pericytes attached
to small venules are positive for α-SMA (Kapanci et al., 1992;
Johnson et al., 2015). Therefore, in this respect, they may be
difficult to initially distinguish from myofibroblasts. In the lung
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and gut, RGS5 expression is also more specific to visceral smooth
muscle where it overlaps with NG2 expression, but not PDGFRβ
expression (Bondjers et al., 2003). Thus, pericyte subtypes add
more ambiguity to marker selection.

Using these markers, lung pericytes have been isolated
primarily from humans and mice. A limited number of studies
have shown that pericytes can be isolated from human lung
samples using antibodies against PDGFRβ (Wilson et al., 2018),
the ganglioside 3G5 (Ricard et al., 2014; Yuan et al., 2020), NG2
(Bagley et al., 2006), CD73/CD90 (Bichsel et al., 2015), or CD146
(Meng et al., 2021) via FACS (Bichsel et al., 2015), magnetic bead
sorting (Bagley et al., 2006; Yuan et al., 2015; Wilson et al., 2018;
Bordenave et al., 2020b; Li et al., 2021), magnetic beads sorting
coupled with FACS (Meng et al., 2021), or cell-selective culture
conditions (Yamaguchi et al., 2020). However, isolation of
pericytes from lung tissue is difficult due to its fibrous nature,
which results in low yields (Dore-Duffy and Esen, 2018). Thus,
there is currently no gold standard for the isolation of pericytes
from human lung tissue and the standardisation of protocols is
required.

Therefore, the heterogeneity, organotypicity, molecular diversity,
and the lack of a gold standard for the isolation and characterisation of
pericytes limits pericyte-related research (Figure 1). By identifying cell
markers, researchers can isolate purer pericyte populations and better
understand changes in different pericyte marker expression. This is
useful to compare between healthy and disease states and generate
biomarkers in the future (Sweeney et al., 2020;Wang et al., 2022). There
is increasing awareness in the field that using scRNA seq, multipanel
staining, and robust comparisons between methods will help overcome
current limitations and drive research in this area.

3 Pericyte responses to the
microenvironment

Many studies have investigated the MSC-like qualities of
pericytes, such as multilineage differentiation (Crisan et al., 2008;
Chen et al., 2009), phenotype (pericytes are positive for the MSC
markers CD105, CD73, and CD90), and plastic adherence
(Dominici et al., 2006). Recent genetic lineage tracing points to
pericytes being MSC progenitor cells (Yianni and Sharpe, 2019).
Thus, they have the ability to differentiate into mesenchymal cells
including the hypermobile myofibroblast. It has been hypothesised
that this differentiation aids the motility of the pericytes and their
migration during fibrosis (Humphreys et al., 2010; Yamaguchi et al.,
2020). This is supported by time course microscopy and kinetic
modelling methods, suggesting that pericytes are a major source of
myofibroblasts in fibrosis (Lin et al., 2008). A number of recent
studies have investigated the responsiveness of pericytes to pro-
fibrotic mediators, in particular TGF-β, PDGF-B, VEGF,
angiopoietins, and Notch ligands. However, most of these studies
are not lung-specific and thus the exact mechanisms that affect
pericyte function in the lung remain unknown. Research in this area
is incipient.

3.1 Transforming growth factor (TGF)-β
signalling

Transforming growth factor (TGF)-β is an important growth
factor necessary for many critical processes including lung
organogenesis and homeostasis, and epithelial-mesenchymal

FIGURE 1
Current limitations of pericyte research. Pericytes are heterogenous depending on their location in the vasculature as well as biological processes
and culture conditions. scRNA-seq data have shown major differences in pericytes derived from different organs. Furthermore, pericytes share markers
with other cell types including fibroblasts, vascular smooth muscle cells, and mesenchymal cells and are therefore difficult to distinguish. Our current
understanding of pericytes is limited as there are gaps in the research on pericyte physiology and pathophysiology. Finally, there is a lack of
standardisation of isolation, characterisation, and cell culture conditions for pericytes which is ultimately driven by a lack of pericyte-specific markers
(Created with Biorender.com).
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interactions. TGF-β is also involved in regulating important
responses such as tissue regeneration and immune response
(Saito et al., 2018). TGF-β has long been associated with
fibrotic conditions, as both the canonical and non-canonical
signalling pathways have been highlighted as key mediators of
fibrosis.

Induced overexpression of TGF-β in animal models has
resulted in severe localised fibrosis characterised by increased
ECM deposition and an increase in myofibroblast-like cells (Sime
et al., 1997; Bellaye et al., 2018). TGF-β has also been thought to
directly interact with pericytes during fibrosis due to the receptor
for TGF-β, TGF Receptor-β (TGFR-β) being present on the cell
surface (Butsabong et al., 2021). Thus, TGF-β stimulation
triggers the differentiation of pericytes into scar-forming
myofibroblasts in a process referred to as pericyte-to-
myofibroblast transition (PMT) which is essential to wound
healing. However, excess PMT is believed to be a significant
contributor to fibrosis (Wu et al., 2013; Yamaguchi et al., 2020;
Zhao et al., 2022). Multiple studies have explored the effect of
TGF-β on the differentiation of pericytes into myofibroblasts,
thusly gaining a more motile phenotype and contributing to the
increased population of myofibroblasts at the site of
inflammation (Johnson et al., 2015). TGF-β-induced subretinal
PMT has been shown to act in Smad2/3 and Akt/mTOR pathways
(Wu et al., 2013; Zhao et al., 2022). Thus, TGF-β signalling is
important to pericyte function but may be dysregulated and
contribute to lung fibrosis.

3.2 PDGF-B/PDGFRβ signalling

The most highly characterized signalling pathway that affects
pericytes is the PDGF-B/PDGFRβ signalling axis, also referred to
as the pericyte-endothelial signalling axis, which is essential to
embryonic and organ development. PDGF-B is a growth factor
secreted at high levels by angiogenic endothelial cells and at a
lower level by quiescent endothelial cells and binds to PDGFRβ
expressed on the surface of developing pericytes (Armulik et al.,
2011). PDGFRβ knockout embryos lack pericytes and vSMCs and
thus PDGFRβ expression is not specific to pericytes
(Noskovičová et al., 2014). PDGFRs are activated by the
binding of ligands which triggers consequent cell signalling
cascades that regulate cell proliferation, differentiation,
migration, mural cell coating, and survival (Thijssen et al.,
2018; Del Gaudio et al., 2022).

The PDGF-B/PDGFRβ signalling axis serves as a paracrine
endothelium-to-mural cells signalling loop which is initiated in
the endothelium where the PDGF ligand is produced and
secreted and receptor activation drives the differentiation of
mesenchymal progenitor cells to mural cells and promotes mural
cell coating of the blood vessels (Gaengel et al., 2009; Del Gaudio
et al., 2022). PDGF-B/PDGFRβ signalling mediates the recruitment
of pericytes to the endothelial cells of new vessels thus providing
support and secreting additional cytokines to aid in angiogenesis
(Thijssen et al., 2018). Thus, PDGFRs are linked to disease
pathology, and overexpression is associated with multiple diseases
including lung disease (Noskovičová et al., 2014; Johnson et al.,
2015).

3.3 Vascular endothelial growth factor
(VEGF) signalling

While the PDGF-B/PDGFRβ signalling axis and TGF-β
signalling are believed to modulate processes such as pericyte
recruitment, proliferation and differentiation, vascular
endothelial growth factor (VEGF) is another growth factor of
interest with important properties. The VEGF family is
composed of five distinct ligands that bind to VEGF receptors
(VEGFRs): VEGF-A, -B, -C, -D, and placental growth factor
[PlGF] (Uemura et al., 2021). VEGF is crucial for embryonic
vasculogenesis and angiogenesis and is considered a survival
factor for cell types including endothelial cells as loss of even
a single allele of the VEGF gene causes embryonic mortality
(Ferrara, 1999). VEGFRs are primarily located on endothelial
cells but also on other vascular cell types including pericytes
(Takagi et al., 1996).

VEGFR1 is located on both vascular endothelial cells and
pericytes, and VEGF-A acts directly on pericytes through
VEGFR1 signalling. Pericyte-derived VEGFR1 has been shown to
have a crucial role in cerebrovascular formation andmaintenance by
stabilising brain vascular integrity and promoting pericyte coverage.
Through paracrine VEGFR1 signalling, pericytes regulate brain
endothelial tube formation, and intracellular VEGFR1-mediated
signalling is required for pericyte migration and regulated Akt
signalling in pericytes (Gong et al., 2022). An in vivo model of
cancer-associated retinopathy as well as an in vitro co-culture model
of the blood brain barrier found that VEGFR1 induces pericyte
ablation causing increased retinal vascular permeability (Cao et al.,
2010; Salmeri et al., 2013). VEGF-A is a key modifier of endothelial
cell sprouting and proliferation and is mediated in a pericyte-
dependent fashion through VEGFR1 (Eilken et al., 2017). Studies
have shown that VEGF regulates contraction and relaxation in
isolated microvascular rat pericytes (Donoghue et al., 2006).
Thus, VEGF-A is an important mediator of pericyte and
endothelial cell function, however, the main role of VEGF-A and
VEGFR1 on pericytes in the lung awaits further investigation.

3.4 Angiopoietin signalling

In contrast to the PDGF-B/PDGFRβ signalling axis, the
Angiopoietin/Tie (Ang/Tie) signalling mainly represents a
signalling loop from mural cells to the endothelium and acts
as a key regulator of adult vascular homeostasis (Augustin et al.,
2009; Gaengel et al., 2009). Tie receptors are receptor tyrosine
kinases activated by Ang ligands. Functional Tie2 receptors are
expressed in low levels on various human and murine pericyte
subtypes including lung pericytes. Tie receptors are stimulated in
a paracrine fashion by Ang1 which is secreted by pericytes and
other cells and are modulated by Ang2 which is mainly secreted
by endothelial cells (Teichert et al., 2017). Therefore, in
combination with the PDGF-B/PDGFRβ signalling between
pericytes and endothelial cells, Tie2 on endothelial cells can
bind to Ang1 produced by pericytes which results in a
reduction of gaps between endothelial cells and therefore
reduced vascular leakage (Baffert et al., 2006; Fuxe et al.,
2011). Via this mechanism, pericytes can influence the influx
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of materials in and out of the bloodstream and contribute to
vascular maturation.

Tie2 signalling has also been linked to angiogenesis and
survival signals through Calpain, phosphoinositide 3-kinase
(PI3K)–Akt and FOXO3A (Augustin et al., 2009; Teichert
et al., 2017). In sprouting angiogenesis, pericyte-produced
Ang1 stabilizes stalk cells via Tie receptor complexes which
promotes cell survival, matrix interactions, and endothelial
barrier function (Jeltsch et al., 2013). Conversely, endothelial
cell-secreted Ang2 has paracrine effects on pericytes, and may
compete with Ang1 to contribute to vascular destabilization
(Teichert et al., 2017). Ng2-Cre-driven deletion of pericyte-
expressed Tie2 delays developmental angiogenesis and vessel
maturation in mice, and Tie2 deletion in pericytes results in a
pro-angiogenic tumour vasculature with enhanced tumour
growth. Furthermore, silencing Tie2 expression significantly
increases brain pericyte motility (Teichert et al., 2017). Ang
signalling may also affect pericytes in a Tie2-independent
fashion. For example, in a study on diabetic mouse retinas,
Ang2 increase induced p53-dependent pericyte apoptosis via
integrin signalling (Park et al., 2014). Therefore, lineage
tracing using Tie2 as a driver also labels pericytes which can
be used to inform experimental design in future.

3.5 Notch signalling

Notch signalling is essential for early stage pericyte development
in zebrafish (Ando et al., 2019). Studies have shown that Notch
signalling regulates mural cell differentiation and function and that
pericytes predominately express Notch3, but also express Notch1,
and low levels of Notch2 and Notch4 (Vanlandewijck et al., 2018;
Nadeem et al., 2020; Bignold et al., 2022). In studies using retinal
pericytes, it was proposed that Notch signalling is crucial to pericyte
survival as they highly express canonical Notch/RBPJK
(recombination signal-binding protein one for J-kappa)
downstream targets and activation of Notch signalling reduced
light-induced cell death (Arboleda-Velasquez et al., 2014). The
mechanism behind Notch-mediated pericyte survival was
determined to be regulation of PDGFRβ levels (Nadeem et al.,
2020). However, there is conflicting evidence surrounding how
Notch3 function affects pericytes depending on the model
investigated–Notch3−/− mice (Henshall et al., 2015), diabetic
Notch3−/− mice (Liu et al., 2018), zebrafish (Wang et al., 2014),
or in patients with cerebral autosomal dominant arteriopathy with
subcortical infarcts and leukoencephalopathy (CADASIL)
(Dziewulska and Lewandowska, 2012; Del Gaudio et al., 2022).
Therefore, further investigations into how Notch signalling affects
pericytes is needed.

4 Pericyte-matrix interactions

As described above, pericytes interact with endothelial cells
and can differentiate into scar-forming myofibroblasts, leading to
collagen deposition and matrix remodelling and thus driving
tissue fibrosis. Depending on the context and disease, these
fibrotic processes are driven at different sites. For example, in

asthma, fibrosis arises in the subepithelium, while in pulmonary
hypertension (PH), the fibrosis occurs in the pulmonary arteries
(Hamid, 2003; Simonneau et al., 2019). Pericyte-ECM
interactions as well as other biochemical cues such as growth
factors and cytokines play crucial roles in these processes. The
way in which cells interact with their surrounding
microenvironment is complex, however, it is evident that
changes in the ECM affect cellular responses (Cox and Erler,
2011). The mechanical features and mechanobiology of pericytes
have been gaining important traction in recent years (reviewed
recently by (Dessalles et al., 2021)). Due to the role of pericytes in
the formation and maintenance of the vasculature, various forces
including contractile and mechanical forces are critical aspects
that affect pericyte function. The various subtypes of pericytes
have different morphology, localization, as well as mechanics and
thus these factors, alongside the physiology of the local
microenvironment, should be considered when creating 2D
and 3D in vitro models incorporating pericytes (Dessalles
et al., 2021). Further insights into pericyte-ECM interactions
are needed to advance our understanding of the biophysical and
biochemical cues which affect pericyte behaviour and function
and, conversely, how pericytes affect the ECM, for example, in
terms of stiffness.

4.1 Disruption to pericyte signalling in
disease

Pericyte migration occurs in healthy tissue as a way for
recruited pericytes to move towards newly formed blood
vessels and endothelial sprouts in order to maintain coverage.
During this process, pericytes can be observed migrating linearly
along the existing blood vessels whilst maintaining contact with
the endothelial cell layer suggesting that this migration is mainly
controlled by endothelial cell interactions (Payne et al., 2021).
This is in stark contrast to the migration observed in inflamed
tissue, as this is associated with the uncoupling of pericytes from
endothelial cells as a primary event and therefore is likely to be
influenced by separate factors.

Disruption of pericyte-endothelial interactions by drugs or
by cytokine changes occurring in inflammation can cause the
dissociation of pericytes from the vasculature. This can lead to
weakened blood vessel structures, resulting in hyperdilation and
low blood pressure (Abramsson et al., 2003). It can also cause
vascular leakage, which can exacerbate inflammation as well as
leave the tissue vulnerable to bloodborne pathogens such as the
Dengue virus (Cheung et al., 2020). Once detached from the
blood vessels, pericytes may continue to affect the surrounding
tissue in specific ways. Within inflamed lung tissue, it has been
observed that pericytes migrate chemotactically into inflamed
areas, i.e., the large conducting airways in asthma and inflamed
pulmonary arteries in pulmonary arterial hypertension (PAH)
(Johnson et al., 2015; Bordenave et al., 2020a). Understanding
the factors causing the directed migration of pericytes under
these conditions is an area of active research. Moreover,
modifying the specific factors that contribute to the pericyte
migration observed in inflammatory/fibrotic conditions is a
viable pharmacological strategy to alleviate the migration of
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pericytes and therefore reduce their contribution to organ
fibrosis. Despite this, it is not yet clear which factors have the
greatest impact on pericyte migration and therefore it is yet to be
elucidated which would be the best targets for therapeutic
action.

5 Pulmonary hypertension (PH)—
Symptoms, disease course, and
pathological mechanisms

PH manifests with symptoms including dyspnoea, fatigue,
dizziness, angina, irregular heartbeat, and oedema and is
clinically defined as abnormally high pressure in the pulmonary
artery and right ventricle of the heart, i.e., above 25 mmHg at rest
according to current guidelines (Simonneau et al., 2019). A number
of pathologies can lead to PH, with five types of PH defined by the
World Health Organization: pulmonary arterial disease, left heart
disease, lung disease, chronic thromboembolic disease, and unclear
or multifactorial mechanisms (Wu X. H. et al., 2022). Of these, Type
1 (PAH) results from endothelial cell dysfunction, leading to
inflammation, occlusive remodelling of the small pulmonary
arteries, accumulation of vascular smooth muscle cells, and
fibrosis; these processes ultimately lead to the formation of
plexiform lesions in the pulmonary arteries and right ventricular
failure (Liu et al., 2022). The 3-year mortality rate for PAH patients
is currently 21% (Chang et al., 2022).

Inflammation of the pulmonary vasculature is currently
understood to be a common characteristic of several types of PH,
predominantly observed in the pulmonary adventitia (Savai et al.,
2012). In the lungs of PAH patients, this inflammatory response is
characterized by the infiltration of macrophages, mast cells,
dendritic cells, and CD8+ cytotoxic T cells (Savai et al., 2012).
Immune cell infiltration into the vessel wall subsequently initiates
a dysregulated wound healing process, leading to excess ECM
production and vessel wall calcification. The loss of pulmonary
artery compliance as a consequence of these structural changes to
the vessel wall increases right ventricular afterload and has been
shown to be a sensitive predictor of mortality in PAH (Papolos et al.,
2021).

The role of pericytes/vSMCs in driving PAH pathology is an area
of active investigation. A recent study by Crnkovic et al. (2022) using
scRNA-seq of healthy and PAH human lungs demonstrated the very
high transcriptional similarity between pericytes and SMCs
(Crnkovic et al., 2022). Overall, this study demonstrated a broad
range of functional and phenotypic changes in pericytes and vSMCs
in PAH. In particular, these authors showed that PAH lung pericytes
represent a contractile, α-SMA expressing cell type, indicating the
capacity of pericytes to differentiate into myofibroblasts and thereby
contribute to vascular wall thickening and reduced vascular lumen
diameter in the PAH lung. Further analysis of the data revealed an
increased capacity for oxygen sensing in pericytes obtained from
remodelled PAH vessels, with a notable increase in NDUFA4L2
which is a mitochondrial electron chain protein that has been
associated with hypoxia-induced PH (Liu et al., 2021).

Understanding the cellular source of ECM proteins (collagens I,
IV, and XIV, fibronectin, tenascin-C) in PAH has long been an area
of intensive research (Botney et al., 1993; Ihida-Stansbury et al.,

2006; Wei et al., 2012; Hoffmann et al., 2015). Moreover, extensive
analysis of clinical samples has demonstrated increased proliferation
and accumulation of vSMCs in remodelled pulmonary arteries
(Sakao et al., 2010; Mura et al., 2019). Although sophisticated
in vitro vessel-on-chip constructs have been designed and
implemented to interrogate the mechanisms of these processes
(Ainscough et al., 2022), a full mechanistic evaluation of crosstalk
between multiple structural and immune cell types and the factors
driving vSMC proliferation and ECM deposition still requires the
use of animal models of PAH in order to identify promising new
therapeutic targets.

5.1 Preclinical models of pulmonary arterial
hypertension (PAH)

A number of animal models of PH have been developed in an
effort to recapitulate the mechanistic origins and pathophysiology of
clinical PH. These animal models (predominantly established in rats
and mice) can be defined according to the method of model
induction: non-invasive, invasive, and genetically modified
models (Wu H. et al., 2022). However, as the molecular
mechanisms of clinical PH are not fully understood, particularly
in the case of idiopathic PAH, these models cannot be relied upon to
explain early events in PH induction and progression. Despite this,
the pathophysiological outcomes of many of these models closely
recapitulate human disease, suggesting that the knowledge gained
from these models may be useful in the pursuit of novel therapeutic
targets.

Non-invasive models of PH in rodents are primarily driven by
chronic hypoxia (CH), treatment with the VEGFR-2 antagonist
Sugen 5,416 (SU5416; semaxanib), or exposure to the macrocyclic
pyrrolizidine alkaloid monocrotaline (Wu H. et al., 2022). In CH-
induced PH rats, exposure to 10% oxygen for a period of 3–4 weeks
results in pulmonary arterial remodelling and endothelial cell
dysfunction (Wu et al., 2020); similar CH exposure in mice
results in a milder phenotype (West and Hemnes, 2011). These
changes are reversible once the animal is returned to a normoxic
environment, so these models best recapitulate milder PH
phenotypes such as those associated with lung diseases such as
chronic obstructive pulmonary disease (COPD) and interstitial lung
disease (ILD) (Nathan et al., 2019). In SU5416-driven models of
PAH, with concomitant CH, both mice and rats demonstrate
vigorous pulmonary endothelial cell proliferation, vascular
remodelling with plexiform lesions, and PH, even after the
animal has been returned to normoxia (Abe et al., 2010).
Important considerations should be taken into account when
using these models regarding animal strain (Lewis rats are only
minimally responsive whereas Sprague-Dawley rats manifest with
severe disease) (Jiang et al., 2016) and gender (female sex hormones
may protect against the initiation of disease) (Chaudhary et al.,
2021). Despite the fact that the inflammatory component of PH
pathology may not be fully recapitulated, SU5416/CH models have
been used for over 20 years in preclinical investigations into PAH
therapeutics. Conversely, the monocrotaline (MCT) model of PH
has a strong inflammatory component, having first been shown in
the 1960s to induce vascular endothelial cell damage and pulmonary
arteritis in rats, ultimately leading to pulmonary vascular
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remodelling and right ventricle hypertrophy (Kay et al., 1967). Since
then, this model has been refined and adapted to study neonatal and
obesity-associated PH, as well as the impact of the gut microbiome
on PH (Kazama et al., 2014; Hong et al., 2021; Lesage et al., 2021).
Importantly, the degree of cytotoxicity induced by MCT in organs
other than the lung cannot be ignored, as this does not reflect the
situation in clinical PH.

Invasive surgical models of PAH are rarely used due to their
technical complexity and high mortality rate; however, these models
can be useful to dissect the mechanisms of right ventricular overload
and failure. These invasive methods can include pneumonectomy,
the insertion of a pulmonary shunt, or pulmonary artery binding,
which increase blood flow and pressure in the pulmonary arteries, a
key characteristic of PH. Combining surgical methods (usually
removal of the left lung) with non-invasive means of inducing
PH (e.g., SU5416 or MCT) induces a phenotype closer to that
seen in human PAH, with both increased blood pressure in the
remaining right lung along with endothelial damage induced by
post-surgery MCT or SU5416 treatment (Katz et al., 2019). Despite
the high degree of accuracy in reproducing human disease
characteristics, the high degree of surgical skill required has
limited the widespread adoption of these combined models.

The advent of gene editing technology has led to the broad
proliferation of PH models based on genetically manipulating the
inflammatory and biochemical mechanisms thought to initiate the
development of PH. A number of genes found to predispose humans
to the development of PH, i.e., BMPR2, KCNK3, and SMAD9, as well
as inflammatory genes associated with endothelial dysfunction (IL-
6 and hypoxia-inducible factor) have been targeted to establish these
models, with varying levels of success in inducing vascular
inflammation, remodelling, and dysfunction (reviewed in detail
by Dignam et al., (2022)). However, as most of these models are
induced in mice, a species that does not readily develop the full range
of pathology observed in humans, a second stimulus (e.g., hypoxia
(Hilton et al., 2022) or cigarette smoke exposure (Heydarian et al.,
2022)) is usually needed to establish a severe disease phenotype.
Crucially, without a deeper understanding of the initiating factors
driving PAH in humans, these mouse models will remain only an
approximation of the clinical form of the disease; this may have
important implications in the delineation of potential therapeutic
targets.

5.2 Recent developments on the role of
pericytes in PAH pathology

Several recent studies using preclinical models of PAH have
demonstrated that lung pericytes are major contributors to PAH
pathology, with major insights provided by women working in this
field of research.

In an elegant study employing primary human lung pericytes
and a SU5416/CH-driven model of PAH in transgenic mice bearing
GFP-labelled pericytes, Bordenaeve et al. (2020b) demonstrated the
acquisition of functional and phenotypic aberrations in pericytes
under disease conditions. These investigators further demonstrated
that the increase in migratory capacity observed in PAH pericytes
was mediated by the CXCR7/CXCR4-CXCL12 pathway.
Conversely, the acquisition of a myofibroblast phenotype by

pericytes was dependent on increased TGF-β signalling via the
upregulation of TGFβRII. Promisingly, further investigations
showed that neutralizing the activity of the chemokine CXCL12
(also known as SDF1) using the naturally occurring neutraligand
chalcone 4 was able to suppress early pericyte accumulation at the
pulmonary arterioles of mice, suggesting that the CXCL12 pathway
may be a viable target for the treatment of PAH. Similarly, using
lineage tracing for pericytes in a CH-driven PAH model, Yuan et al.
(2020) showed that pericytes under diseased conditions become
more responsive to CXCL12 and contribute to the muscularization
of small pulmonary arterioles. Intriguingly, the genetic ablation of
CXCL12 specifically in NG2−positive pericytes resulted in
significantly reduced vascular pathology following exposure to
hypoxia compared with wild-type mice, which showed increased
right ventricular systolic pressure, right ventricular hypertrophy,
and vascular muscularization. Similar results were seen following the
pharmacological blockade of CXCL12 activity using the
CXCR4 antagonist AMD3100, again highlighting the importance
of CXCR4 activity in controlling the migratory capabilities of
pericytes.

In another study, Yuan et al. (2020) were also able to show that,
beyond the muscularization of pulmonary arterioles, pericyte
dysfunction may also contribute to the loss of microvessels in the
lung following exposure to CH. In these experiments, the authors
demonstrated that the PAH-associated loss of Wnt5a in endothelial
cells prevented pericyte recruitment and angiogenesis, which not
only impaired vascular regeneration after a period of hypoxia but
may have also freed up pericytes to subsequently transform into
myofibroblasts and contribute to large vessel muscularization. It will
be interesting to determine if altered Wnt5a expression and
aberrations in the planar cell polarity pathway play important
roles in the repair of the pulmonary vasculature after injury and
in other diseases where altered endothelial cell/pericyte interactions
are an underlying pathology.

In a similar vein, the research group of Karin Tran-Lundmark
have demonstrated that altered PDGF-B signalling in the lung can
protect against the development of vascular muscularization in
response to hypoxia (Tannenberg et al., 2018). In these
experiments, considering that homozygous knockout of PDGF-B
or its cognate receptor PDGFRβ is embryonically lethal, Pdgfbret/ret

mice were used to downregulate PDGF-B activity–loss of the
retention motif on the C-terminus of PDGF-B allows this growth
factor to freely diffuse throughout the tissue rather than being
retained in the vascular basement membrane where it exerts its
activity of recruiting pericytes to endothelial cells. In the context of
reduced PDGF-B activity, hypoxia-induced pulmonary vessel
muscularization was highly disorganized and less severe than in
wild type hypoxic mice, resulting in the normalization of
hemodynamic parameters and reduced disease severity. Although
the pharmacological blockade of PDGFRβ is possible using
compounds such as imatinib, the promiscuous nature of receptor
tyrosine kinases and their widespread expression are associated with
detrimental side effects, suggesting that more targeted strategies are
necessary to pursue PDGF-B as a therapeutic target in PAH (Hoeper
et al., 2013).

Additional insight into the critical importance of pericyte-
endothelial cell interactions in PAH was provided in a study by
Wang et al., showing that the loss of prolyl hydroxylase domain
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protein 2 (PHD2) in endothelial cells increased pericyte
recruitment to vessels and led to PAH in the absence of any
additional insult (Wang et al., 2016). Endothelial cell-specific
knockdown of PHD2, which has the function of degrading
hypoxia inducible factor-α (HIF-α), increased the expression
of TGF-β in pulmonary pericytes and promoted perivascular
fibrosis, right ventricular hypertrophy, and pulmonary vessel
dysfunction. Mechanistically, these changes were mediated by
aberrant Ang1/Notch3 signalling, as PHD2-deficient
endothelial cells produced higher levels of Ang1, thereby
increasing the expression of Notch3 and promoting pericyte
proliferation and excessive pericyte coverage of pulmonary
vessels.

Considering the fact that Yuan et al. (2020) showed that
pericytes obtained from the lungs of PAH patients expressed
significantly higher levels of CXCL12 compared to healthy lung
pericytes, attenuation of the CXCL12/CXCR4 pathway holds
considerable promise. Indeed, Bordenave et al. (2020a) have
shown that the daily treatment of rats with established PAH
(induced either by MCT injection or SU5416-CH) with
compounds that suppress CXCR4 activity was able to reduce
PAH disease severity, attenuate right ventricular hypertrophy,
prevent remodelling of the pulmonary vasculature, and decrease
pericyte coverage of arterioles. Interestingly, the use of
neutraligands against the chemokine CXCL12 (chalcone 4 or
the more bioavailable LIT-927) was more effective than the
pharmacological blockade of the receptor CXCR4 with
AMD3100. It is anticipated that further refinements to
CXCL12 neutraligands may be beneficial in the treatment of
PAH, not only in terms of preventing vascular remodelling but
also by attenuating the infiltration of CXCR4+ macrophages,
which may provide an additional clinical benefit.

Beyond these studies performed in mouse models of PAH,
recent work has provided novel insight into the genetic basis of
pericyte dysfunction in PAH (Pienkos et al., 2021). By
performing whole genome sequencing on PAH patients with a
family history of the disease, these authors revealed deficits in
TNIP2 and TRAF2, which encode proteins that regulate the
activity of NF-κB, previously associated with inflammation
and vascular remodelling in PAH. Indeed, knockdown of these
two transcripts in human pericytes led to a substantial increase in
pericyte proliferation. It is anticipated that additional genomic
studies of PAH patients will reveal other pathways that alter
pericyte homeostasis in this disease.

6 Allergic asthma—Symptoms, disease
course, and pathological mechanisms

Asthma is an incredibly common lung disease currently
affecting around one in 12 people in the UK (British Lung
Foundation, 2023) and has been the subject of an abundance
of research in previous years. Despite this, the extent to which
pericytes contribute to the characteristic airway remodelling seen
in allergic asthma, as well as the disease as a whole is still debated.
The pathology of allergic asthma is initiated by the inhalation of
an allergen which commences a cascade of cytokines and
physiological changes resulting in the remodelling of the

airway. This remodelling includes; epithelial loss, mucus gland
hyperplasia, subepithelial fibrosis, inflammatory cell infiltration,
bronchial smooth muscle hypertrophy and vascular changes
(Hamid, 2003). These all result in a hyperresponsive airway
and airway obstruction causing the coughs and wheezes
synonymous with asthma. Pericytes have been long thought to
contribute to the pathophysiology of asthma, although the extent
to which they contribute is highly contested. However, pericytes
have been shown to affect every element of airway remodelling
both directly and indirectly making their importance in allergic
asthma undeniable. The plasticity of pericytes combined with
their penchant for both producing and responding to cytokines
increases their scope of effect and makes them a highly favourable
element in future drug discovery.

6.1 Preclinical models of asthma

Unlike humans, mice do not naturally develop allergic
asthma, but under controlled conditions can develop Th2- or
Th17-polarized airway inflammation in response to respiratory
allergen exposure (recently reviewed in detail (Rydell-Törmänen
and Johnson, 2019)). The principal considerations in the design
of animal models of human disease are the aetiology and the
presentation of the model, i.e., the method of disease induction
and how the disease develops over time (Mullane and Williams,
2014; Williams and Roman, 2016). Ideally, the features of human
disease should be found in a physiologically relevant mouse
model; in the case of allergic asthma, these include respiratory
allergen exposure, a complex immune response coordinated in
the bronchopulmonary lymph nodes, inflammation and
remodelling of the large airways, and airway
hyperresponsiveness (wheezing) (Holgate et al., 2015). Since
early mouse models of asthma using the surrogate protein
ovalbumin (OVA) failed to recapitulate these features
(Alessandrini et al., 2020), this field of research has moved
on to using mouse models of allergic asthma driven by
respiratory environmental allergen exposure. These novel
models more closely replicate the route of allergen exposure,
the site of disease induction, and the structural and
physiological consequences of chronic allergic asthma as seen
in the clinic.

The most commonly used allergen-driven model employs
house dust mite (HDM), which has inherent allergenic properties
and induces severe asthma-like airway inflammation, prominent
airway wall remodelling, and airway hyperresponsiveness
(Johnson et al., 2004; Bignold et al., 2022). Other models
employ additional clinically important environmental
allergens, such as cockroaches, Alternaria, and pollens, either
singly or in combination (Arizmendi et al., 2011; Wimmer et al.,
2015; Yee et al., 2018; Lewis et al., 2022). These models were
developed to be clinically relevant, and the immunological
responses to these allergens are relatively similar to what is
seen in asthmatics (Rydell-Törmänen and Johnson, 2019).
However, there are important physiological and
pharmacological differences between mice and humans that
need to be taken into consideration when attempting to
translate the results of mouse studies into clinical trials.
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6.2 Pericytes and the regulation of immune
cell infiltration

A key step to the progression of asthma as a disease is
increased immune cell infiltration. Asthma is often thought of
as a Th2 inflammatory condition with the majority of asthmatics
having an increased Th2 response to airway allergens (León and
Ballesteros-Tato, 2021). Many current treatments for asthma
attempt to modulate this response, including inhaled
corticosteroids, omalizumab, and several inhibitory antibodies
targeting Th2 cytokines such as IL-4, IL-5 and IL-13 (Bleecker
et al., 2016; Hossny et al., 2016; Kawakami and Blank, 2016;
Castro et al., 2018). Many cases of asthma are also eosinophilic,
often with the extent of the eosinophilia determining disease
severity (Bakakos et al., 2019). The Th2 cytokines IL-5, IL-4 and
IL-13 have all been linked to eosinophil trafficking or the
activation of adjacent signalling pathways such as the IgE
cascade responsible for Th2 lymphocyte production thus
encouraging further migration of eosinophils (Fulkerson and
Rothenberg, 2013; Pelaia et al., 2022). In addition to increases
in eosinophils, many other immune cells are also upregulated
within inflamed airways including dendritic cells, basophils and
mast cells which may also have antigen-presenting roles
alongside their effector roles (Kim et al., 2010).

Pericytes play a critical role in controlling the infiltration of
immune cells from the bloodstream towards the site of
inflammation. It has been observed that when pericytes
migrate away from blood vessels towards the site of
inflammation, they leave gaps which can result in vascular

leakage and unregulated immune cell infiltration (Figure 2)
(Ferland-McCollough et al., 2017). There is also increasing
evidence that pericytes play an active role in the recruitment
of immune cells via the secretion of cytokines such as CXCL1 and
CXCL8 as well as the induction of vasodilation which would
increase the rate of infiltration (Navarro et al., 2016). This
highlights the importance of pericytes in both the initiation
and the progression of inflammation.

6.3 Contribution of pericytes to subepithelial
fibrosis in allergic asthma

Subepithelial fibrosis is probably the most apparent structural
change that occurs during asthma. Many studies have shown that
asthmatic airways contain remodelled basement membranes which
alter the properties of the airways. One of the changes in the
subepithelium is the increase in ECM proteins. This is likely
caused by aberrant myofibroblasts and can include a range of
proteins including several types of collagen and adhesion
proteins such as fibronectin (Ito et al., 2019). The increase in
these proteins would encourage cross-linking, leading to a stiffer,
overly responsive membrane (Jamieson et al., 2021). Within the
asthmatic subepithelium, there is also an alteration to the SMC
population. Hyperplasia and hypertrophy of airway SMCs is often
found within asthmatic airways. Hypertrophy of SMCs increases
their contractility and therefore contributes to airway
hyperresponsiveness. It has also been suggested that hypertrophic
smooth muscle may have a protective effect on neighbouring

FIGURE 2
The involvement of pericytes in the airway remodelling observed in asthmatic lungs. Pericytes modulate immune infiltration, detach from the blood
vessel and migrate towards the site of inflammation where they increase deposition of extracellular matrix components, and also contribute to vascular
leakage (Created with BioRender.com).
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myofibroblasts by modulating apoptosis (Chetty and Nielsen, 2021).
The increased number of SMCs also increases the contraction of
airways as well as the responsiveness of the cells to stimuli (Khan,
2013). SMCs can also contribute to the increased ECM deposition
previously explained, thus increasing their contribution to airway
stiffness (Cheng et al., 2016). Similar to SMC hyperplasia, there is
also an increase in the myofibroblast population around asthmatic
airways (Boser et al., 2017). Myofibroblasts contribute to a large
amount of ECM deposition as well as contractile forces, thus
exacerbating airway stiffness and hyperresponsiveness (Darby
et al., 2014).

Our research group has demonstrated that pericytes largely
contribute to subepithelial fibrosis in allergic asthma due to their
ability to differentiate into myofibroblasts. Due to their contractile
ability, when pericytes migrate towards the airway wall during
inflammation, they contribute to the increased contractile forces
produced by SMCs (Johnson et al., 2015). In addition, since they
express similar markers (α-SMA, SM22), pericytes may actually be
included in the increased cell counts observed in smooth muscle
hyperplasia (Smyth et al., 2018). It has also been suggested that the
differentiation of pericytes into myofibroblasts contributes to much
of the increased myofibroblast population in inflamed airways
(Johnson et al., 2015). Therefore, pericytes can contribute both to
increased airway constriction and aberrant ECM deposition within
fibrotic airways.

6.4 Therapeutic strategies targeting
pericytes in allergic asthma—CXCL12

CXCL12 is a ligand which binds to the receptor CXCR4 that is
found on pericytes. It has long been associated with the bone
marrow and the retention of hematopoietic stem cells within the
stem cell niche (Kim and Broxmeyer, 1998). As similarities
between pericytes and these progenitor cells have been
observed, as well as the presence of the receptor on the
pericyte surface, CXCL12 has also been linked to the
migration of pericytes (Xu et al., 2020). The overproduction of
CXCL12 is currently associated with a variety of fibrotic lung
diseases including idiopathic pulmonary fibrosis, COPD and
asthma (Negrete-García et al., 2010; Jaffar et al., 2020;
Kothapalli et al., 2021). Negrete-Garcia et al. suggested that
CXCL12 was significantly elevated within the bronchoalveolar
lavage samples from asthmatic patients (Negrete-García et al.,
2010). As CXCL12/CXCR4 interactions also mediate pericyte-
endothelial association, the increased concentration of
CXCL12 at the site of inflammation may act as an attractant,
facilitating the migration of pericytes towards the inflamed
airway (Takabatake et al., 2009).

The inhibition of the CXCL12/CXCR4 gradient has been
explored several times in the context of combating fibrosis as
well as in the field of oncology (Guo et al., 2016). One of the
most common inhibitors explored is AMD3100, a potent
CXCR4 antagonist first developed to combat HIV (De Clercq,
2015). Studies have shown that using AMD3100 to disrupt the
CXCL12/CXCR4 gradient can lead to a reduction of migration of
mesenchymal cells and therefore a reduction of cells contributing to
fibrosis within the lung (Lukacs et al., 2002; De Clercq, 2015; Li et al.,

2020). However, it has also been seen that inhibiting CXCR4 may
have unwanted effects within the bone marrow. Yang et al. observed
that treatment of renal fibrosis with AMD3100 caused an infiltration
of T cells from the bone marrow towards the site of fibrosis and
caused increased tissue damage (Yang et al., 2016). Kumar and
Ponnazhagan (2012) have similarly suggested that AMD3100 can
cause the mobilisation of MSCs which, in the case of lung fibrosis,
would contribute to the pool of dysregulated pericytes exacerbating
the fibrosis. For this reason, we have previously explored the use of a
CXCL12 inhibitor to disrupt the gradient by alternate means. LIT-
927 is a neutraligand which binds to CXCL12 and prevents it from
interacting with CXCR4 (Regenass et al., 2018). We have shown that
treatment with LIT-927 reduces airway remodelling in a mouse
model of asthma by reducing the migration of pericytes (Bignold
et al., 2022). This highlights both CXCL12 and CXCR4 as druggable
targets for future experimentation.

6.5 Therapeutic strategies targeting
pericytes in allergic asthma—Periostin

Periostin is a small matricellular protein which has several roles
within the ECM. It has long been linked to allergic asthma as serum
periostin is often used as a biomarker for disease severity (Izuhara
et al., 2016). Elevated expression of periostin has also been linked to
a variety of lung diseases including idiopathic pulmonary fibrosis,
interstitial pneumonia and non-small cell lung cancer (Okamoto
et al., 2011; Naik et al., 2012; Okazaki et al., 2018). It has been seen to
encourage migration through the upregulation of TGF-β and
differentiation to a myofibroblast phenotype (Uchida et al.,
2012). It can activate several key signalling pathways such as NF-
κB, PI3K/Akt and FAK highlighting the widespread impact of
periostin (Conway et al., 2014). This may pose the problem of
off-target effects when directly inhibiting periostin with a
therapeutic.

Despite this, several studies have been completed showing
that periostin-null mice have significantly less fibrosis than the
wild type and therefore indicate the merit in inhibiting periostin
therapeutically (Uchida et al., 2012; Hwang et al., 2017). OC-20 is
an antibody which has been used to directly inhibit periostin via
the FAS1-2 domain of the protein (Orecchia et al., 2011). It has
been shown to reduce airway hyperresponsiveness, cell
proliferation and collagen deposition within fibrotic lung
diseases (Naik et al., 2012; Bentley et al., 2014; Yamato et al.,
2021). Lebrikizumab is another antibody inhibitor of periostin,
although instead of directly binding to periostin, it instead binds
to IL-13 and prevents the formation of the IL-13Rα/IL-4Rα dimer
which induces periostin production (Guttman-Yassky et al.,
2020). In clinical trials, lebrikizumab reduced the rate of
asthma exacerbations as well as increased lung function in
moderate-to-severe asthmatics (Hanania et al., 2015). In in
vivo studies, it has also decreased airway hyperresponsiveness
as well as reduced the amount of immune cells and pro-
inflammatory mediators present in the lung (Hacha et al.,
2012). Another indirect way of inhibiting periostin is using
cinnamaldehyde, a compound that gives cinnamon its flavour
and odour, which is shown to interact with periostin through the
modulation of the Nrf2 pathway (Mitamura et al., 2018). Some
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studies have suggested that, in vivo, cinnamaldehyde can reduce
both IL-13-dependent and TGF-β-dependent periostin
expression (Mitamura et al., 2018). It has also been shown
that cinnamaldehyde mitigates increased pericyte migration
caused by periostin as well as reducing IL-13-induced
production of periostin by pericytes (Bignold and Johnson,
2021). This shows that important investigation into the use of
periostin as a target for pharmacological intervention is
underway and may yield useful drugs to treat fibrotic lung
diseases in the future.

7 Chronic obstructive pulmonary
disease (COPD)—Symptoms, disease
course, and pathological mechanisms

COPD is a complex and heterogenous syndrome
characterized by progressive and incompletely reversible
airway obstruction, in some patients associated with
emphysema, caused by abnormalities of the airways
(bronchitis, bronchiolitis) and/or alveoli (emphysema)
(Olajuyin et al., 2019; Vasilescu et al., 2019). The growing
number of COPD cases in recent years is due to the pandemic
of tobacco smoking, environmental pollution, and ageing of the
global population (Jamieson et al., 2020; Rao et al., 2020;
Hiemstra et al., 2021). Though the pathobiological
mechanisms of COPD remain incompletely understood,
various contributors such as the protease-antiprotease
imbalance, the oxidant-antioxidant imbalance, cellular
senescence, autoimmunity, chronic inflammation, and
defective lung growth and development are suggested to play
essential roles in COPD pathogenesis (Katayama et al., 1988; Rao
et al., 2020).

COPD patients typically complain of dyspnoea, activity
limitation and/or cough with or without sputum production and

may experience acute respiratory events characterized by increased
respiratory symptoms called exacerbations that require specific
preventive and therapeutic measures (GOLD, 2023). The
therapeutic intervention with the greatest impact on COPD is
smoking cessation. Inhaled corticosteroids (ICS) and long-acting
bronchodilators, including long-acting β-agonists (LABA) and long-
acting muscarinic antagonists (LAMA) are mainly used as
pharmacological therapies to prevent acute exacerbations of
COPD, reduce symptoms, and minimize the rate of lung
function decline. As current therapies do not modify the course
of the disease, developing new therapeutic strategies aiming to
regenerate tissue is necessary (Wu et al., 2022).

7.1 Pericytes in COPD

Pericytes have a critical role in blood vessel wall stabilization,
vessel dilation, and vascular perfusion within the microcirculation.
Endothelial cells form tubes as well as complex vascular networks
and facilitate pericyte recruitment simultaneously (Payne et al.,
2019). While the pericyte regulates the capillary permeability, the
defective pericyte distorts the pericyte-endothelial cell interaction
resulting in a chaotic, poorly organized and dysfunctional
vasculature (Pinto-Plata et al., 2007; Kato et al., 2018; Meng
et al., 2021). Increasing evidence indicates that pericyte
dysfunction is involved in COPD pathology, which is
characterized by airway remodelling, bronchitis (inflammation),
and emphysema (alveolar destruction). Various risk factors lead
to COPD, including tobacco smoking, air pollution, genetic
susceptibility, and abnormal early life events (Hiemstra et al.,
2021). However, there are only a few studies directly
investigating the role of pulmonary pericytes in COPD with
limited molecular mechanisms.

It has been shown that tobacco smoke decreases pulmonary
HIF-2α (hypoxia-inducible factor-2α) expression, which results in

TABLE 1 Summary of the contribution of pericytes to pulmonary diseases as well as the key compounds involved.

Disease Contribution of pericytes Mediators involved

Pulmonary hypertension - Changes to pericyte-endothelial interactions - TGF-β

- Migration of pericytes - CXCR7

- Accumulation of pericytes on blood vessels - CXCR4

Asthma - Migration of pericytes - TGF-β

- Airway remodelling - IL-4

- Vascular leakage - IL-13

- CXCL12

- Periostin

Chronic obstructive pulmonary disease - Dysfunctional vasculature - Ang 1/2

- Loss of pericytes - HIF-2α

- Impaired pericyte coverage of capillaries - HGF

- IL-1β

- TNF-ɑ
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an emphysematous pathology. Based on this observation, Pasupneti
et al. established an emphysematous model using endothelial Hif-
2α-knockout mice, where they observed a reduction of hepatocyte
growth factor (HGF) expression, which resulted from the loss of
endothelial cells and pericytes (Pasupneti et al., 2020). In another
study, Pakhomova et al. established a combined murine emphysema
and metabolic impairment model induced by cigarette smoke
extract (CSE) and sodium glutamate, where they observed a
reduction of pericytes (CD31-/CD34-/CD146+) (Pakhomova
et al., 2020).

Kress et al. evaluated the impact of benzo [a]pyrene diol epoxide
(BPDE), a major genotoxic component in cigarette smoke and air
pollution, on primary human endothelial cells (HUVECs), primary
human SMCs and primary human pericytes (Kress et al., 2019),
respectively. Both the HUVECs and human pericytes showed less
cell viability and enhanced apoptosis as well as necrosis in response
to BPDE. Compared with primary HUVECs, human pericytes
showed only weak induction of premature senescence and much
lower levels of DNA damage.

Additionally, advanced age is also a major risk factor for
developing COPD. The ageing lung is characterized by increased
cell adhesion and stress responses, with reduced mitochondria and
cellular replication (Chow et al., 2021; Schneider et al., 2021). In a
transcriptomic study using deconvolution analysis, the proportions
of alveolar epithelial type 2 cells decrease with age whereas pericytes
increase with age (Chow et al., 2021). However, how age-associated
molecular alterations contribute to COPD pathogenesis remains
largely unknown in pericytes. Blervaque et al. discovered an
impaired pericyte coverage of muscle capillaries in patients of
mild-to-moderate COPD (Blervaque et al., 2020); this pericyte
impairment may be due to inflammation, as both IL-1β and
TNF-ɑ levels are increased in the serum of COPD patients
(Pinto-Plata et al., 2007; Zou et al., 2017). Furthermore, Gouzi
et al. showed a higher plasma Ang2/Ang1 ratio in COPD
patients and found that this ratio was inversely correlated with
the pericyte coverage index (Gouzi et al., 2022).

8 Conclusion

Pericytes are an underappreciated cell type with important
roles in lung health and disease. Based on the available evidence,
pericytes play important roles in the initiation and maintenance
of chronic lung diseases (Table 1). Given their location at the
interface between the airways and the vasculature, pericytes are
not only exquisitely sensitive to their surrounding environment

but also amenable to pharmacological interventions. Further
research is required to further understand the mechanisms of
pericytes in various lung diseases and efforts to create standards
for lung pericyte isolation, characterisation, and cell culture are
needed.
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