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Abstract
In era of reglobalization, sustainably resilient supply chains (SCs) are imperative in corpo-
rations to improve performance and meet stockholders’ expectations. However, sustainably
resilient SCs could not be effective if are not assessed by using advanced frameworks, sys-
tems, and models. As such, developing a novel network data envelopment model (DEA) to
appraise sustainably resilient SCs is our purpose in this article. To do so, we present a new
double-frontier methodology to provide optimistic and pessimistic efficiency measures in
network structures. Moreover, ideas of outputs weak disposability, chance-constrained pro-
gramming, and discrete dominance are incorporated in a unified framework of modelling
efficient and inefficient production technologies. The new network DEA model also can
address dissimilar types of data, including undesirable and integer-valued and ratio outputs,
stochastic intermediate products, and integer-valued inputs in a unified framework. Further-
more, an aggregated Farrell type efficiency measure is developed which allows to provide
the complete ranking of units so that each decision-making unit (DMU) has its own rank
in both overall and divisional point of view. We show the unique features of our developed
model using a real case study in paint industry to evaluate the efficiency and reducing carbon
dioxide (CO2) emissions. The results show that how well the proposed models can evaluate
the sustainability and resilience of supply chains in the presence of uncertainty and with
dissimilar types of data.
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1 Introduction

Considering sustainability concept in supply chain management (SCM) (Manupati et al.,
2020) needs to be taken into account in organizations. “Globalization has forced companies
to paymore attention to threemaindimensions of sustainability such asfinancial, eco-friendly,
and social under the name of the triple bottom line (TBL) across their SCM (Cloutier et al.,
2020)”. Considering TBL in SCM provides organizations with numerous advantages such as
enhanced production quality, decreased manufacture costs, decreased investment risk, and
enhanced employeemotivation (Kabadurmus&Erdogan, 2020;Shibin et al., 2020).Although
sustainable SCM (SSCM) has addressed substantially over the last decade, the impact of
sustainability interruptions on the whole resilience of the SSCM has not fully explored
to date. (Fahimnia et al., 2017; Sazvar et al., 2021). Many businesses can prevent from
irreparable loses such as bankruptcy and complete shutdown by investing in resilient SSCs
(Sharifi et al., 2020).Nonetheless, the presence of resilient SSCs cannot provide organizations
with competitive advantages if such SCs are not assessed by using powerful methodologies
and techniques (Tavassoli et al., 2021). Thus, it is crucial to develop and apply sustainably
resilient SCs assessment methods for improving the performance of business operations.

Sustainability in SCs has received considerable attention by practitioners and scholars
over the last two decades (He et al., 2021). “While conventional SCs consider economic
dimension and address factors such as costs decrease, production time reduction and on
time delivery decrease of products, sustainable SCs (SSCs) deal with environmental and
social dimensions in response to customers’ needs (Wang&Gunasekaran, 2017)”. In today’s
highly competitive markets, environmental and social dimensions should be given as equal
importance as economic dimension (Jabbour et al., 2020; Shadab et al., 2021). “Based on
the concept of sustainability in SCs, organizations should not scarify the quality of living to
destroy biological sources and pollute environment and that people should be respected in
workplace with respect to their right (Rentizelas et al., 2020)”. To benefit from the advantages
of SSCs, companies should focus on resources conservation, product innovations, processes
optimization, cost saving and productivity increase by addressing the TBL across their SCs
(Aslam et al., 2021; Kahi et al., 2017). As a result, considering sustainability dimensions in
SCs leads to numerous benefits for businesses, employee and customers and society (Hong
et al., 2019).

Resilience is another significant topic in SCs and is considered as SC risk management
(Kaur & Singh, 2019; Yazdani et al., 2022). Recent swift changes in global markets have
pushed organizations to address resilience concept in their SCs (Rajesh, 2019). This concept
has brought into SC risk management in dealing with the SC problems caused by unexpected
events such as flood, earthquake (Behzadi et al., 2017). Based on a definition SC resilience is
the ability of SC for recoiling from disruptions aimed at delivering on promises to customers
within a given time (Tukamuhabwa et al., 2015). The consequence caused by interruptions
in SCs can result in decreasing market share followed by complete closure of a business. As
such, SCs should be designed in a way that mitigate risks caused by unexpected disruptions
promptly and effectively (Han et al., 2020).
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In view of sustainability and resilience concepts in SC, it is crucial to address these con-
cepts in measuring sustainability and resilience of SCs (Ramezankhani et al., 2018). “The
measurement approaches of sustainably resilient SCs should be able to cover the complex
network structures of SCs and evaluate them considering different indicators”. In this regards,
network data envelopment analysis (DEA) is recognized as a rigorous methodology of per-
formance evaluation of the complex structures such as SCs (Zhou et al., 2019). NetworkDEA
provides insights for the specific resources of organizational process inefficiency and assist
management for devising targeted remedial measures (Avkiran, 2009). Because of unique
advantages of network DEA, it has been used in many performance evaluation problems of
SCs (Hensel et al., 2021; Kalantary & Farzipoor Saen, 2019).

In the current article some research questions are brought up with respect to the litera-
ture as follow: (1) how can we develop an integrated network DEA model for dealing with
dissimilar types of data including undesirable and integer-valued and ratio outputs, stochas-
tic intermediate products, and integer-valued inputs? (2) how different techniques including
chance constrained programming (CCP1) and discrete dominance can be applied in an uni-
fied framework of modelling efficient and inefficient production technologies? (3) how a
double-frontier approach can be proposed for providing optimistic and pessimistic efficiency
measures? and (4) how aggregated Farrell type efficiency measure can be developed which
allows for the complete ranking of units in both overall and divisional point of view?

In the current article, we evaluate sustainably resilient SCs using a novel stochastic double
frontier analytic model. In the context of DEA, double frontiers mean that there are two
efficiency measurements. One is the best or optimistic efficiency that we can measured them
in the performance evaluation process. The other one is the worst or pessimistic efficiency
that we measure DMUs’ inefficiency (Ahmady et al., 2013; Farzipoor Saen, 2022; Fathi &
Farzipoor Saen et al., 2021). The proposed model is developed based on a double-frontier
approach extended in network structures. In addition, some specific assumptions and different
types of data take into account for developing the proposed model. Providing optimistic
and pessimistic efficiency measures is also another feature of our developed model. In our
viewpoint, the current article provides some distinctive contributions as follow:

• A new general network DEAmodel is extended for dealing with dissimilar data, including
undesirable and integer-valued, and ratio outputs, stochastic intermediate products, and
integer-valued inputs.

• Different techniques such as CCP and discrete dominance are applied in a unified frame-
work of modelling efficient and inefficient production technologies.

• A novel double-frontier approach is presented to provide optimistic and pessimistic effi-
ciency measures.

• An aggregated Farrell type efficiency measure is developed which allows for the complete
ranking of units in both overall and divisional points of views.

The rest of the current article is as follows: the relatedworks come inSect. 2.Our developed
model is provided in Sect. 3. Thereafter, an empirical study is presented. Conclusion and
research avenue are also presented in the last Section.

2 Background

In this section we provide a background on sustainable SCs, resilient SCs, DEA and network
DEA. Furthermore, we identify knowledge gaps to fill.

1 CCP is an optimization technique for addressing uncertainty in decision variables in modelling.
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2.1 Sustainable SCs

SSCM is considered to manage actions, resources and information concerned SCs aimed at
maximizing profit, simultaneously minimizing the ecological consequences, and increasing
social well-being (Dabbous & Tarhini, 2021; Raj et al., 2021). There are some related works
in the literature to evaluating sustainable SCs. Haghighi et al. (2016) developed a balanced
scorecard-DEA approach for measuring SSCs. “The model presented by Haghighi et al.
(2016) can deal simultaneously with qualitative and quantitative criteria while take environ-
mental and sustainable indicators into account for assessing sustainability and resilience of
SCs”. Izadikhah and Farzipoor Saen (2018) assessed SCs from sustainability perspective by
using a chance-constrained DEA methodology in the existence of desirable and bad outputs
such as revenue and rate of inferior raw material. Chance constrained technique is significant
technique for addressing optimization problems in uncertain environments (Azadi & Farzip-
por Saen, 2012). Tseng et al. (2018) proposed a Fuzzy Delphi Method (FDM) and Analytical
Network Process (ANP) model for considering both the linkage amongst measures and the
fuzziness of prejudiced measures in sustainable SCs. Kalantary and Farzipoor Saen (2019)
developed an inverse DEA model in dynamic network structures for evaluating sustainabil-
ity of SCs. The proposed model by Kalantary and Farzipoor Saen (2019) determines some
inputs and outputs sets in connection with the TBL for the performance evaluation. Wang
et al. (2020) developed a modeling methodology by combining the multi-region input–out-
put model and DEA approach, and multidimensional features for evaluating sustainability of
global SCs. Samavati et al. (2020) presented a dynamic network double frontier DEA model
to assess sustainable SCs. They used double frontier concept in dynamic network DEA con-
text for estimating efficiency of sustainable SCs over multiple periods. Shadab et al. (2021)
measured the performance of sustainable SCs by proposing a network DEA model. The
model considered several scenarios with congestion assumption in network structures. They
evaluated the performance of sustainable SCs of 20 resin firms in Iran using their developed
model. Sadeghi et al. (2022) appraised the sustainability of SCs based on a network DEA
model. They considered negative and positive values in their model and used super effi-
ciency technique for ranking the SCs. Farzipoor Saen et al. (2022) assessed the sustainability
of transport SCs through a network DEA model. They incorporated malmquist productivity
index (MPI) in network DEA and considered bad outputs, non-discretionary and integer data
in their model.

2.2 Resilient SCs

According to a definition resilience in SC is the capacity of an organization for surviving,
adapting, and growing in response to swift changes (Munoz & Dunbar, 2015). The ability of
organizations to forecast the impact plays a key role in achieving long-term and short-term
goals if they recover their settings effectively in face of unexpected changes (Tukamuhabwa
et al., 2015). Organizations with resilient SCs can mitigate transportation interruptions and
a variety of supply interruptions that can happen when the upcoming big disaster would be
(Gunasekaran et al., 2015). Because of considerable importance of assessment in resilient
SCs some scholars have addressed it to date. Spiegler et al. (2012) established clarified
performance indicators that capture the attributes of resilience in SCs. They applied the
Integral of the Time Absolute Error (ITAE) as a rigorous tool for measuring resilient SCs.
Chen et al. (2017) developed a system to assess SC reliability and resilience. The developed
framework encapsulates risks that are in supply, demand, the company, and the external
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situation. Sahu et al. (2017) proposed an assessment multi-level system to assess resilient
SCs. In order to address subjective assessment information in the developed system, they
used fuzzy sets theory. Ramezankhani et al. (2018) developed a dynamic network DEA
approach for evaluating the performance of resilient and sustainable SCs. Shi and Mena
(2021) proposed an event-basedBayesianmethod tomodel the fundamental relations between
variables at different time intervals for assessing resilience in SCs with respect to financial
and operational indicators. The method concentrated on two main components of resilience
recoverability and reliability. Izadikhah et al. (2021) evaluated sustainable and resilient SCs
through a network DEA model with fuzzy and stochastic data. They also combined bad
outputs in the model and assessed sustainability and reliance of transport SCs. KazemiMatin
et al. (2021) appraised the resilience and sustainability of blood SCs through a three stages
network DEA. They considered a range of data in the model and showed that how well the
model can assess the resilience and sustainability of blood SCs. Yazdani et al. (2022) assessed
resilient SCs in food industry using an extended decision-making model. They used the best
worst approach and fuzzy sets theory for measuring resilient SCs in the food industry. They
also did some sensitivity analysis to show the reliability of their model.

2.3 DEA and network DEA

DEA is one of Operations Research (OR) recognized techniques and is applied to measuring
efficiency of a number of peer decision making units (DMUs) (Razipour-GhalehJough et al.,
2020; Sorkhi & Paradi, 2020; Xin et al., 2022). DEA uses inputs and outputs ratios for
evaluating efficiency of DMUs. Charnes, Cooper, and Rhodes (CCR) (1978) pioneered DEA
and (Banker-Charnes–Cooper) (BCC) (1984) extended the initial DEA model. Over the last
few decades, DEA has been extended and applied by scholars as a powerful methodology for
solving many appraisal problems in the real world. Although DEA provides decision makers
and managers with several advantages, its traditional models such as CCR and BCC have
some drawbacks. There is a notion in normal DEA models that more products using fewer
resources is indication of superior performance. In spite of this, there are many DMUs like
factories that produce bad outputs such as inferior products or toxic gases. It is obvious that in
these cases producing more outputs does not mean better performance. The literature shows
that initial attempts for taking bad or undesirable outputs into account in the DEA structure
were made by Pittman (1983) and Färe et al. (1989). Liu et al. (2015), Piao et al. (2019), Kao
and Hwang (2021) and Nemati et al. (2021) have also addressed bad outputs in DEA over
the last few years.

Another drawback of traditionalDEA is the existence of ratio data such as the percentage of
discharged patients from a healthcare center inmeasuring efficiency ofDMUs.Hollingsworth
and Smith (2003) were among the first scholars to address efficiency measurement using
DEA assuming ratio information. Emrouznejad and Amin (2009) developed a convexity
assumption in DEA in response to ratio data. Olesen et al. (2017) presented the concept of
potential ratio efficiency to address this issue, however, the proposed concept is unable to
make difference between efficiency of DMUs. To increase discrimination power between
efficiency of DMUs, Hatami-Marbini and Toloo (2019) proposed the modified multiplier
in DEA structure. The presence of integer-valued data is another pitfall of traditional DEA
models. There is an assumption that in efficiency measurement all inputs and output deal
with real value while there might be some integer data such as the number of personnel or
the number of fabricated products. Integer-valued data modeled in DEA context by Lozano
and Villa (2006) for the first time. Kazemi Matin Kuosmanen (2009) developed Lozano and
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Villa’s (2006) using the notion of natural disposability and natural divisibility. Over the last
decade, some scholars have addressed integer-valued DEA such as Wu and Zhou (2015),
Khoveyni et al. (2019) and Chen et al. (2021). Furthermore, there are some observations in
the real life that deal with stochastic data. For the first time stochastic data in DEA discussed
by Sengupta (1982) by considering stochastic inputs and outputs in measuring efficiency.
Over the last decade some scholars have addressed stochastic data in DEA such as Azadi
and Farzipoor Saen (2011), Kaffash and Marra (2017), Tavassoli et al. (2020), Hosseini et al.
(2021), and Izadikhah and Farzipoor Saen (2021).

DEA models in traditional structures address inputs and outputs into account; the opera-
tions of the internal components are ignored when evaluating performance. When a system
deals with a number of components operating interdependently, overlooking the operations
within a component may provide misleading efficiency evaluations (Moreno & Lozano,
2014). Thus, to assess efficiency of network structures, the operations of the components
should be addressed. Efficiency assessment of network structures using network DEA origi-
nally presented by Färe and Grosskopf (1996). Tone and Tsutsui (2009) developed a network
slacks-based measure (SBM) DEAmodel for performance evaluation of electric power com-
panies that deal with network structures. Sueyoshi et al. (2010) proposed a range adjusted
measure (RAM) two-stage network DEA that can deal with both bad outputs and good out-
puts. The model used for measuring productivity of US fossil fuels power plants. Yu et al.
(2016) dynamic network DEA for performance appraisal of bus transit providers in the pres-
ence of shared inputs, undesirable and desirable outputs. Tavana et al. (2018) proposed a
dynamic network DEA model for performance evaluation of network structures in the exis-
tence of bad and good carryovers and negative data. Esmaielzade and Kazemi Matin (2019)
developed multi-period network DEA models for performance assessment of overall and
specific time period efficiencies with series and parallel sub-processes for each time period.
Samavati et al. (2020) proposed a double frontier network DEA model to evaluate sustain-
able SCs in the presence of desirable and undesirable outputs. Izadikhah and Farzipoor Saen
(2021) developed a linear two-stage DEA model with stochastic data to evaluate sustain-
ability of supply chains. To assess sustainably resilient supply chains in public transport,
Izadikhah et al. (2021) proposed a fuzzy chance-constrained network DEA.

2.4 Knowledge gaps

The related works in the literature show that performance assessment of SCs with respect
to sustainability and resilience criteria plays a quintessential role in organizations’ achieve-
ments. However, a few studies have considered both sustainability and resilience aspects
for measuring SCs. Furthermore, the existing studies are unable to consider dissimilar data
such as integer-valued data, stochastic data, ratio data, desirable and undesirable outputs in
network DEA models for performance evaluation. Moreover, approaches of outputs weak
disposability, chance constrained programming (CCP), and discrete dominance have not been
applied simultaneously in a unified framework of modeling efficient and inefficient produc-
tion technologies. Additionally, aggregated Farrell type efficiency measure for the complete
ranking of units in both overall and divisional points of views has not been developed in
the double frontier approach. The gaps mentioned above is addressed in the current article
by developing a stochastic analytical model in complexed structures to assess sustainably
resilient SCs.
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3 Proposedmethodology

Now we develope our novel model to evaluate sustainably resilient SCs. Suppose there are
n number of observed production units to be gauged based on m number of inputs and s
nnumber of utputs. Denote by x j � (x1 j , . . . xmj ) ∈ R

m
+ and y j � (

y1 j , . . . , ys j
) ∈ R

s
+ the

inputs and the outputs vectrs of DMUj ( j � 1, . . . , n), with at least one positive element in
each vector.

In traditional multiplier DEA models v � (v1, . . . , vm) ∈ R
m
+ and u � (u1 . . . , us) ∈ R

s
+

as common weights are used for capturing preference information about inputs and outputs.
respectively. Based on variable returns to scale (VRS) assumption (it is a type of frontier
scale applied that shows increase or decrease in inputs values not neccessairly lead to a
proportional change in the outputs values (Azadi et al., 2020), the ratio of (virtual) weighted
outputs to (virtual)weighted inputs for any observed unit j ∈ {1, . . . , n}defines the (absolute)
efficiency ratio of DMUo as

E j (u, v, u0) �
∑s

r�1 ur yr j − u0∑m
i�1 vi xi j

, (1)

which is well-defned for any feasible weights such that
∑m

i�1 vi xio > 0, (Podinovski, 2001).
Here, u0 is the intercept variable.

Now we present DEAmodels to estimate the optimistic and pessimistic efficiency scores.
The following BCCmodel (Banker et al., 1984) evaluates the optimistic efficiency of DMUo

relative to the other observations:

E f fo(Optimistic) � max
u,v,u0

Eo(u, v, u0) (2)

Subject to : E j (u, v, u0) ≤ 1, j � 1, . . . , n,

u ≥ 0, v ≥ 0.

Here, DMUo is the under evaluation unit. Equation (2) is changed to a linear programming
(LP2) using approache proposed by (Charnes & Cooper, 1962) as follow:

E f fo(Optimistic) � max
u,v,u0

s∑

r�1

ur yro − u0 (3)

Subject to :
m∑

i�1

vi xio � 1,

s∑

r�1

ur yr j −
m∑

i�1

vi xi j − u0 ≤ 0, j � 1, . . . , n,

ur ≥ 0, vi ≥ 0, r � 1, . . . , s, i � 1, . . . ,m.

At optimality, if there exist a set of positive weights
(
u∗, v∗, u∗

0

)
for which

E f fo(Optimistic) � 1, then DMUo is BCC or technical efficient; otherwise it is ineffi-
cient.

Any feasible input/output weights can be utilized to rank observed DMUs with respect
to the corresponding efficiency ratios (1). The BCC model (2) ranks the observations based
on their most favurable (optimistic) input/output weights. However, it can not provide more

2 In Mathematics, linear programming is a method of optimising operations with some constraints (Dantzig,
2002).
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information about the efficiency ratio of the under evaluation unit compares with the other
observations. Toovercome this issue, an aggregate score of optimistic and pessimistic relative.

efficiencyies can be used for ranking observed DMUs without lots of computation and
information.

The pessimistic relative efficiency of DMUk is defined based on ideas presented byWang
et al. (2007) as follow:

E f fo(Pessimistic) � min
u,v,u0

Eo(u, v, u0) (4)

Subject to : E j (u, v, u0) ≥ 1, j � 1, . . . , n,

u ≥ 0, v ≥ 0.

By using Charnes and Cooper’s transformations (1962), the fractional programming (4)
is stated as the following LP:

Eo(Pessimistic) � min
u,v,u0

s∑

r�1

ur yro − u0 (5)

Subject to :
m∑

i�1

vi xio � 1,

s∑

r�1

ur yr j −
m∑

i�1

vi xi j − u0 ≥ 0, j � 1, . . . , n

ur ≥ 0, vi ≥ 0, r � 1, . . . , s, i � 1, . . . ,m.

At this conjuction we present dual formulations.
By taking dual from the above stated LP for the optimistic and pessimistic models we get

the following dual LPs (envelopment forms), respectively as follow:

E f fo(Optimistic) � minθ (6)

Subject to :
(
θxo, yo

) ∈ TV RS

E f fo(Pessimistic) � maxϕ (7)

Subject to :
(
ϕxo, yo

) ∈ T ′
V RS

In which TV RS � { (x, y) ∈ R
m+s
+ |x ≥ ∑n

j�1 λ j x j , y ≤ ∑n
j�1 λ j y j ,

∑n
j�1 λ j �

1,∀ j : λ j ≥ 0} denotes the production technology set under variable returns to scale (VRS)
assumption and T ′

V RS � { (x, y) ∈ R
m+s
+ |x ≤ ∑n

j�1 λ j x j , y ≥ ∑n
j�1 λ j y j ,

∑n
j�1 λ j �

1,∀ j : λ j ≥ 0} denotes its transpod technology set.3

Overall performance assesment and completet ranking of production units is avail-
able by integrating these two different efficiencies (Wang et al., 2007). Now we extend
the proposed models above in network structures. Suppose that there are n observed
DMUs in general network case, which DMUj ( j � 1, . . . , n) comprises q stages.

The kth stage (k � 1, . . . , q) use external inputs x(k)
i

(
i � m(k−1) + 1, . . . ,m(k)

)
and the

intermediate products z(k−1)
g

(
g � h(k−2) + 1, . . . , h(k−1)

)
for producing fabricated products

y(k)
r

(
r � s(k−1) + 1, . . . , s(k)

)
and intermediate product z(k)g

(
g � h(k−1) + 1, . . . , h(k)

)
. A

typical general series network is shown in Fig. 1.

3 Please see Lins et al. (2005).
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Fig. 1 General series network

For the general series network production systems with VRS assumption, the production
technology set (Färe & Grosskopf, 2000) can be stated as follows:

TNetwork−V RS � {(x, z, y) ∈ R
m(q)+h(q)+s(q)

+ |
n∑

j�1

λ
(k)
j x (k)

i j ≤ x (k)
i ,

n∑

j�1

λ
(k)
j z(k)g j ≥ z(k)g ,

z(k)g ≥
n∑

j�1

λ
(k+1)
j z(k)g j , y(k)

r ≤
n∑

j�1

λ
(k)
j y(k)

r j ,

n∑

j�1

λ
(k)
j � 1, λ(k)

j ≥ 0, j � 1, . . . , n,

k � 1, . . . , q, i � m(k−1) + 1, . . . ,m(k), r � s(k−1) + 1, . . . , s(k), g � h(k−1) + 1, . . . , h(k)}.

(8)

Here, λ(k)
j variables are used to denote the intensity weights of DMUj in division k.

Note that the transposed network technology set T
′
Network−V RS can also be defined as

a similar extension of T
′
V RS for the network series cases and can be extend to compute

pessimistic efficiency scores.
DEA models in traditional structures assume that inputs and outputs data in production

processes are non-negative real values. In spite of this, in many real situations this assumption
can be true.

Without losing generality of the developed models and in order to address the real appli-
cation, we assume the following different types of data in this study as follow:

• Non-integer (N I ) and integer (I ) inputs,
• Non-integer (N I O) and integer (I O) outputs,
• Deterministic (D) and stochastic (S) intermediates,
• Good (G) and bad (B) outputs,
• Absolute (A) and ration (R) positive outputs.

Thus, we consider the following decompositions of inputs, intermediate products and
outputs index into mutually disjoint subsets:

I ntermediaes � D ∪ S

Outputs � N I O ∪ I O

Outputs � G ∪ B � G ∪ (A ∪ R)

Then we have intermediate and output vectors as follows:
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x � (
x I , xN I

)
, z � (

zD, zS
)
, y � (

yG , yB
)
, yB � (

yI O , yN I O
)
and yN I O �(

yA, yR
)
.

For ease of presentation, it is assumed that all divisions follow a similar data structure.
Developing this assumption for a variety of dissimilar data would be simple.

Mow, we provide our approaches for building alternative data structures:

i. The stochastic intermediate products z̃ S(k)
g can be considered as random variables that

follow a normal distribution. In the DEA framework, Charnes and Cooper’s (1959)
proposed chance-constrained programming (CCP) for dealing with stochastic and we
use this approach in our modeling.

ii. To consider integer-valued outputs; i.e. y I (k) ∈ Z
|I |
+ , we apply the approach proposed

by Kuosmanen and Kazemi Matin (2009) and Kuosmanen et al. (2015).
iii. To address bad outputs, the weak disposability (WD) technique proposed by Shephard

(1974) is applied in the current paper. Based on the WD axiom,
(
x, z, yG , yB

) ∈ T
implies that

(
x, z, α yG , α yB

) ∈ T for all α ∈ [0, 1]. Kuosmanen (2005) and Kuosma-
nen and Kazemi Matin (2011) introduced and discussed the production technology set
for satisfying the fundamental axioms, including weak disposability of good and bad
outputs.

iv. To modeling undesirable ratio outputs yR , it should be noted that this type of data is
unable to satisfy the conventional production assumptions. In the current article, we use
the idea proposed by Oleson et al. (2015). Under VRS assumption and considering the
axiom of selective (Podinovski, 2005) for the ratio outputs, the condition λ

(k)
j yR(k)

r ≤
λ

(k)
j yR(k)

r j is incorporated into the constraints of the VRS production technology set. That
is for all ratio output items, the observed units applied in the convex combinations of
volume inputs and outputs in constructing the production set are not allowed to operate
worse than yR(k)

r .

Employing these modellings, the production technology set in the presence of the above
mentioned special data types, under VRS assumption can be presented as follows:

T Sto− WD−I nt−Ratio
Network−V RS �

⎧
⎨

⎩

((
x I , xN I

)
,
(
zD, z̃S

)
,
(
yG ,

(
yB,A, yB, R , yB, I

)))
|

n∑

j�1

λ
(k)
j x (k)

i j ≤ x (k)
i ,

n∑

j�1

λ
(k)
j zD(k)

g j ≥ zD(k)
g ,

n∑

j�1

λ
(k+1)
j zD(k)

g j ≤ zD(k)
g ,

n∑

j�1

λ
(k)
j z̃S(k)

g j ≥ z̃ S(k)
g ,

n∑

j�1

λ
(k+1)
j z̃S(k)

g j ≤ z̃ S(k)
g , yG(k)

r ≤
n∑

j�1

α jλ
(k)
j yG(k)

r j , yB, A(k)
r

�
n∑

j�1

α jλ
(k)
j yB, A(k)

r j , λ
(k)
j yB,R(k)

r ≤ λ
(k)
j yB, R(k)

r j , yB, I (k)
r ≤

n∑

j�1

α jλ
(k)
j yB, I (k)

r j

n∑

j�1

λ
(k)
j

� 1, yB, I (k)
r , x I (k)i ∈ Z+, ˘(k)j ≥ 0, 0 ≤ j ≤ 1, ∀k, ∀i, ∀r, ∀g

⎫
⎬

⎭
.

Using CCP technique for dealing with stochastic data, the production set can be stated as
follows:
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T Sto− WD−I nt−Ratio
Network−V RS �

⎧
⎨

⎩

((
x I , xN I

)
,
(
zD, z̃S

)
,
(
yG , ( yB,A, yB, R, yB, I O

))
|

n∑

j�1

λ
(k)
j x (k)

i j ≤ x (k)
i ,

n∑

j�1

λ
(k)
j zD(k)

g j ≥ zD(k)
g ,

n∑

j�1

λ
(k+1)
j zD(k)

g j ≤ zD(k)
g , Pr

⎧
⎨

⎩

n∑

j�1

λ
(k)
j z̃ S(k)

g j ≥ z̃ S(k)
g

⎫
⎬

⎭

≥ 1 − α, Pr

⎧
⎨

⎩

n∑

j�1

λ
(k+1)
j z̃ S(k)

g j ≤ z̃ S(k)
g

⎫
⎬

⎭

≥ 1 − α, yG(k)
r ≤

n∑

j�1

α jλ
(k)
j yG(k)

r j , yB(k)
r

�
n∑

j�1

α jλ
(k)
j yB(k)

r j , λ
(k)
j yB,R(k)

r ≤ λ
(k)
j yB, R(k)

r j ,

n∑

j�1

λ
(k)
j

� 1, yB, I O(k)
r , x I (k)i ∈ Z+, λ

(k)
j ≥ 0, 0 ≤ α j ≤ 1, ∀k, ∀i, ∀r , ∀g

}
.

Computational considerations in this paper are as follow:

(a) Given the normal distribution for the variables z̃ S(k)
g j , the probability constraint

Pr

{
n∑

j�1
λ

(k)
j z̃S(k)

g j ≥ z̃ S(k)
g

}

≥ 1 − α could be equivalently presented as
n∑

j�1
λ

(k)
j zS(k)

g j +

�−1(α)u(k)
g ≥ zS(k)

g , with
(
u(k)
g

)2 �
n∑

j�1

n∑

l�1
λ

(k)
j λ

(k)
l Cov

(
z̃ S(k)
g j , z̃ S(k)

gl

)
+Var

(
z̃ S(k)
g

)
−

2
n∑

j�1
λ

(k)
j Cov

(
z̃ S(k)
g j , z̃ S(k)

g

)
, in which E

(
z̃ S(k)
g j

)
� zS(k)

g j and E
(
z̃ S(k)
g

)
� zS(k)

g signify

the expected values, �−1 is the inverse of cumulative distribution function (CDF) and
Var(.) and Cov(., .) are the variance and covariance operators.

Similarly, the stochastic inequality constraint Pr

{
n∑

j�1
λ

(k+1)
j z̃S(k)

g j ≤ z̃ S(k)
g

}

≥ 1 − α

can be ultimately transformed into
n∑

j�1
λ

(k+1)
j zS(k)

g j −�−1(α)u(k+1)
g ≤ zS(k)

g . See Cooper

et al. (2002, 2004) for more details.
(b) In T Sto−WD−I nt−Ratio

Network−V RS , α j is applied for showing the individual abatement factors
concerning the WD axiom of bad outputs of DMUj . Owing to the increase of

abatement variables α j and considering λ
(k)
j , the corresponding output constraints in

T Sto−WD−I nt−Ratio
Network−CRS are non-liner. To address that this, the following variable substitu-

tions proposed by Kuosmanen (2005) is applied.

∀ j,∀k : α jλ
(k)
j � δ

(k)
j , (1 − α j )λ

(k)
j � μ

(k)
j ,λ(k)

j � δ
(k)
j + μ

(k)
j .

So, the production technology set with these different data structures, takes the following
form:

T Sto−WD−I nt−Ratio
Network−V RS � {

((
x I , xN I

)
,
(
zD, zS

)
,
(
yG , ( yB,A, yB,R, yB,I O

)
)
)
|

n∑

j�1

(
δ
(k)
j + μ

(k)
j

)
x (k)
i j ≤ x (k)

i ,
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n∑

j�1

(
δ
(k)
j + μ

(k)
j

)
zD(k)
g j ≥ zD(k)

g ,

n∑

j�1

(
δ
(k+1)
j + μ

(k+1)
j

)
zD(k)
g j ≤ zD(k)

g ,

n∑

j�1

(
δ
(k)
j + μ

(k)
j

)
zS(k)
g j + �−1(α)u(k)

g

≥ zS(k)
g ,

n∑

j�1

(
δ
(k+1)
j + μ

(k+1)
j

)
zS(k)
g j − �−1(α)u(k+1)

g ≤ zS(k)
g ,

(
u(k)
g

)2 �
n∑

j�1

n∑

l�1

(
δ
(k)
j + μ

(k)
j

)(
δ
(k)
l + μ

(k)
l

)
Cov

(
z̃ S(k)
g j , z̃ S(k)

gl

)

+ Var
(
z̃ S(k)
g

)
− 2

n∑

j�1

(
δ
(k)
j + μ

(k)
j

)
Cov

(
z̃ S(k)
g j , z̃ S(k)

g

)
, yG(k)

r ≤
n∑

j�1

δ
(k)
j yG(k)

r j ,

yB,A(k)
r �

n∑

j�1

δ
(k)
j yB,A(k)

r j ,
(
δ
(k)
j + μ

(k)
j

)
yB,R(k)
r ≤

(
δ
(k)
j + μ

(k)
j

)
yB,R(k)
r j ,

yB,I (k)
r �

n∑

j�1

δ
(k)
j yB,I (k)

r j , yB,I O(k)
r , x I (k)i ∈ Z+,

n∑

j�1

(
δ
(k)
j + μ

(k)
j

)
� 1, δ(k)

j ≥ 0, μ(k)
j ≥ 0,∀k,∀i,∀r ,∀g} (9)

Note that the transposed technology set T ′Sto− WD−I nt−Ratio
Network−V RS , follows a similar structure

only with changing the role of inputs and outputs together.
Nowwepresent double frontier efficiency evaluation in networkDEAmodelwith different

type of data. In this paper, for overall performance evaluation of observed network production
units, a weighted Farrell type efficiency score of the related subunits is suggested for both
optimistic and pessimistic case. The two different scores for optimistic and pessimistic cases
are then aggregated into a unified score for full rank of the observed DMUs.

To get the optimistic overall efficiency score of DMUo concerning the other network
production units in T Sto−WD−I nt−Ratio

Network−V RS is suggested as follow:

E f f No (Optimistic) � min
θ,δ,μ,y

q∑

k�1

w(k)θ (k)
o (Model (1))

Subject to
n∑

j�1

(
δ
(k)
j + μ

(k)
j

)
xN I (k)
i j ≤ θ(k)

o x N I (k)
io ,∀i ∈ N I

n∑

j�1

(
δ
(k)
j + μ

(k)
j

)
x I (k)i j ≤ x (k)

i ≤ θ(k)
o x I (k)io , ∀i ∈ I

n∑

j�1

(
δ
(k)
j + μ

(k)
j

)
zD(k)
g j ≥ zD(k)

go ,∀g ∈ D
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n∑

j�1

(
δ
(k)
j + μ

(k)
j

)
zD(k)
g j ≥ zD(k)

go ,∀g ∈ D

n∑

j�1

(
δ
(k+1)
j + μ

(k+1)
j

)
zD(k)
g j ≤ zD(k)

go ,∀g ∈ D

n∑

j�1

(
δ
(k)
j + μ

(k)
j

)
zS(k)
g j + �−1(α)u(k)

g ≥ zS(k)
go , ∀g ∈ S

n∑

j�1

(
δ
(k+1)
j + μ

(k+1)
j

)
zS(k)
g j − �−1(α)u(k+1)

g ≤ zS(k)
go , ∀g ∈ S

(
u(t)
g

)2 �
n∑

j�1

n∑

l�1

(
δ
(k)
j + μ

(k)
j

)(
δ
(k)
l + μ

(k)
l

)
Cov

(
z̃ S(k)
g j , z̃ S(k)

gl

)
+ Var

(
z̃ S(k)
g

)

− 2
n∑

j�1

(
δ
(k)
j + μ

(k)
j

)
Cov

(
z̃ S(k)
g j , z̃ S(k)

gl

)
, t ∈ {k, k + 1}, ∀g ∈ S

yG(k)
ro ≤

n∑

j�1

δ
(k)
j yG(k)

r j ,∀r ∈ G

yB,A(k)
ro �

n∑

j�1

δ
(k)
j yB,A(k)

r j ,∀r ∈ B ∩ A

(
δ
(k)
j + μ

(k)
j

)
yB,R(k)
ro ≤

(
δ
(k)
j + μ

(k)
j

)
yB,R(k)
r j ,∀r ∈ B ∩ R

yB,I (k)
ro �

n∑

j�1

δ
(k)
j yB,I (k)

r j ,∀r ∈ B ∩ I

n∑

j�1

(
δ
(k)
j + μ

(k)
j

)
� 1,

x (k)
i ∈ Z+, 0 ≤ θ(k)

o ≤ 1, δ(k)
j ≥ 0, μ(k)

j ≥ 0,∀i ∈ I ,∀k,∀ j .

Here, DMUo is the under evaluation unit and θ
(k)
o (k � 1, . . . , q) are efficiency variables

associated with individual divisions. Also,
q∑

k�1
w(k) � 1 that w(k) (k � 1, . . . , q) are pre-

defined positive weights related to divisions used to combine division efficiencies into one
composite optimistic score EN

o (Optimistic). Note that these weights are also used for the
decision-makers to determine relative importance of each individual division.

In addition, the pessimistic efficiency score of DMUo relative to other units in the trans-
posed technology set T ′Sto− WD−I nt−Ratio

Network−V RS is suggested to be evaluated by the following
maximization model.

E f f No (Pessimistic) � max
ϕ,δ, μ, ȳ

q∑

k�1

w′(k)ϕ(k)
o (Model (2))
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Subject to
n∑

j�1

(
δ
(k)
j + μ

(k)
j

)
xN I (k)
i j ≥ ϕ(k)

o x N I (k)
io ,∀i ∈ N I

n∑

j�1

(
δ
(k)
j + μ

(k)
j

)
x I (k)i j ≥ x (k)

i ≥ ϕ(k)
o x I (k)io , ∀i ∈ I

n∑

j�1

(
δ
(k)
j + μ

(k)
j

)
zD(k)
g j ≤ zD(k)

go ,∀g ∈ D

n∑

j�1

(
δ
(k+1)
j + μ

(k+1)
j

)
zD(k)
g j ≥ zD(k)

go ,∀g ∈ D

n∑

j�1

(
δ
(k)
j + μ

(k)
j

)
zS(k)
g j − �−1(α)u(k)

g ≤ zS(k)
go , ∀g ∈ S

n∑

j�1

(
δ
(k+1)
j + μ

(k+1)
j

)
zS(k)
g j + �−1(α)u(k+1)

g ≥ zS(k)
go , ∀g ∈ S

(
u(t)
g

)2 �
n∑

j�1

n∑

l�1

(
δ
(k)
j + μ

(k)
j

)(
δ
(k)
l + μ

(k)
l

)
Cov

(
z̃ S(k)
g j , z̃ S(k)

gl

)
+ Var

(
z̃ S(k)
g

)

−2
n∑

j�1

(
δ
(k)
j + μ

(k)
j

)
Cov

(
z̃ S(k)
g j , z̃ S(k)

gl

)
, t ∈ {k, k + 1}, ∀g ∈ S

yG(k)
ro ≥

n∑

j�1

δ
(k)
j yG(k)

r j ,∀r ∈ G

yB,A(k)
ro �

n∑

j�1

δ
(k)
j yB,A(k)

r j ,∀r ∈ B ∩ A

(
δ
(k)
j + μ

(k)
j

)
yB,R(k)
ro ≥

(
δ
(k)
j + μ

(k)
j

)
yB,R(k)
r j ,∀r ∈ B ∩ R

yB,I (k)
ro �

n∑

j�1

δ
(k)
j yB,I (k)

r j ,∀r ∈ B ∩ I

n∑

j�1

(
δ
(k)
j + μ

(k)
j

)
� 1,

x (k)
i ∈ Z+, 1 ≤ ϕ(k)

o , δ
(k)
j ≥ 0, μ(k)

j ≥ 0,∀i ∈ I ,∀k,∀ j .

Here, ϕ
(k)
o (k � 1, . . . , q) are decision variables associated with individual divi-

sions and
∑q

k�1 w′(k) � 1, where w′(k) (k � 1, . . . , q) are predefined positive weights
related to divisions used to combine division scores into one composite pessimistic score
EN
o (Pessimistic).

Remark 1 In these optimization models, new integer variables x (k)
i are applied for precluding

real objectives for integer-valued inputs, as such a subset of variables are limited to integer
values.
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Remark 2 If we assume that intermediate products among different production units

are independent, then Cov
(
z̃ S(k)
g j , z̃ S(k)

gl

)
� 0 for j �� l. This independence assump-

tion leads to the following relation:
(
u(t)
g

)2 � ∑n
j�1

(
δ
(t)
j + μ

(t)
j

)2
Var

(
z̃ S(t)
g j

)
+

(
1 − 2

(
δ
(t)
o + μ

(t)
o

))
Var

(
z̃ S(t)
go

)
.

Theorem 1 Model (1) and Model (2) are always feasible and bounded.

Proof Since for all k, 0 ≤ w(k) ≤ 1 and 0 ≤ θ
(k)
o ≤ 1, then the objective value

of Model (1) is always bounded. To show the feasibility of this model, let θ
(k)
o � 1

δ
(k)
o � δ

(k+1)
o � 1, δ

(k)
j � δ

(k+1)
o � 0(∀k,∀ j �� o), and also μ

(k)
j � μ

(k+1)
j � 0(∀k∀ j).

Furthermore, let xi (k) � x I (k)io (∀i ∈ I ). The values can address the constraints of model (1).

including
(
u(t)
g

)2 �
(
δ
(t)
o + μ

(t)
o

)2
Var

(
z̃ S(t)
go

)
+ Var

(
z̃ S(t)
go

)
− 2

(
δ
(t)
o + μ

(t)
o

)
Var

(
z̃ S(t)
go

)
�

Var
(
z̃ S(t)
go

)
+ Var

(
z̃ S(t)
go

)
− 2Var

(
z̃ S(t)
go

)
� 0. This completes the proof for Model (1). The

same proof can be for Model (2).

The new introduced composite optimistic and pessimistic efficiencies are measured rel-
ative to different technology sets, leads to different rankings for network production units.
We note that the provided rank orders for two different views may be different because at
optimistic case, units are evaluated relative to efficient frontier of the production set, while at
pessimistic case, inefficient frontier is used in the evaluation. It is clear that any assessment
results and ranking criteria addresses only one of these perspectives which is unrealistic.

An overall performance score is thus needed to provide an overall ranking for the observed
network DMUs with different data structure. As Wang et al. (2007) suggested at optimality,
the following geometric average efficiency (GAEff) of the two optimistic and pessimistic
measures are used to aggregate and compute the overall and divisional performance measure
of DMUo:

GAE f f No (Overall) �
√√√√

( q∑

k�1

w(k)θ
∗(k)
o

)( q∑

k�1

w′(k)ϕ∗(k)
o

)

(10)

GAE f f No (Divisionk) �
√

θ
∗(k)
o ϕ

∗(k)
o (11)

Remark 3 The new proposed double-frontier overall and divisional efficiency scores satisfy
the following useful properties. Their proofs are straightforward.

P1 GAE f f No (Overall) and GAE f f No (Divisionk)(k � 1, . . . , p) are monotonic in
inputs.

P2 GAE f f No (Overall) and GAE f f No (Divisionk)(k � 1, . . . , p) are unit invariant.

4 Empirical study

In this section we provide an empirical study for illustrating and validating our developed
model. Owing to increasing population growth rate, economic growth rate and living stan-
dards over the last two decades, Iran has become one of the largest producers and consumers
of industrial and building paints and coatings in Asia. The existence of huge oil reserves
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is the main reason of highly competitive paint and coating market in Iran and the region.
Projected roughly $560 million in March 2020, this market has been dominated by internal
manufacturers. In this case, we assess sustainably resilient SCs of 18 paint and coating pro-
ducers in Iran using the proposed network DEA model. The SCs of our case comprise three
stages: suppliers, manufacturers and distributors as stage 1, stage 2 and stage 3, respectively.
In supplier stage we have three inputs including material cost, staff cost and cost of safety
and healthcare. To consider NetZero (falling CO2 emissions to zero value) we propose CO2

emissions as the undesirable output of stage 1. The quantity of material and the quantity of
material are intermediate variables between stages 1 and 2. Transportation cost are IT budget
are inputs of manufacturers stage and the number of received warnings and the rate of infe-
rior fabricated products are the outputs of this stage. The quantity of fabricated products is
intermediate variable between stages 2 and 3. The number of personnel is input of distributor
stage and annual sale and annual income are outputs of this stage. Table 1 summarizes the
factors used to assess sustainably resilient SCs in this paper. Tables 2, 3 and 4 provide the
data set of the case study.

Table 2 The data set associated with stage 1

Number
of
Supply
chain

DMUs Stage 1

Inputs Output Intermediates

Material
cost
(1,000,000
Rial)

Staff cost
(100,000
Rial)

Cost of
safety and
healthcare
(100, 000
Rial)

CO2 emissions
(100,000 Ton)

The
quantity
of
material
(Ton)

Average
inventory
(Day)
Mean,
Variance

1 Sayan 515,470 15,120 7300 124 4703 8.5, 3.25

2 Hermes 383,410 11,780 9500 91 3419 8, 2

3 Rangvareh 452,530 14,380 6800 121 4245 7.75, 2.74

4 Bajak 685,790 24,190 6125 169 6301 7.75, 2.74

5 Azin 429,710 13,270 4700 113.5 4193 6.375, 1.60

6 Hana Rang 254,150 85,240 3550 74 2297 8, 2

7 Hermes
Fam

538,620 17,190 7184 139.2 4875 6.625, 1.42

8 Azin Rang 551,780 18,390 9260 151 5019 8.75, 2.18

9 Serv Rang 397,100 11,190 5730 103 3597 8, 1.5

10 Rangin 217,580 71,530 7520 71 1973 6.5, 2.07

11 Marron 485,700 17,950 4300 139 4384 8.5. 3.25

12 Asan Rang 441,600 15,720 6180 125 3997 8.75, 2.18

13 Shabrang 567,800 19,720 9300 147 5124 7.5, 0.75

14 Soor 234,600 88,370 8480 83 2109 7, 1.5

15 Takrang 519,200 17,210 3520 130.4 4971 9, 0.5

16 Gita Asa 352,400 10,180 4100 89 3295 6.5, 2.25

17 Pars 547,100 20,750 5700 141.5 5064 8, 2.5

18 Arovin 4,103,00 10,930 3490 117 3801 6.375, 1.60
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Table 3 The data set associated with stage 2

Number
of
Supply
chain

DMUs Stage 2

Inputs Outputs Intermediate

Transportation
cost (10,000
Rial)

IT budget
(10,000
Rial)

The
number of
received
warnings

The rate of
inferior
fabricated
products

The quantity
of fabricated
products
(Ton)

1 Sayan 306,718 198,423 5 0.004 4679

2 Hermes 210,653 112,390 3 0.007 3387

3 Rangvareh 287,124 207,170 5 0.005 4201

4 Bajak 334,908 265,410 7 0.005 6243

5 Azin 219,781 157,610 4 0.003 4167

6 Hana Rang 160,770 91,250 8 0.008 2278

7 Hermes
Fam

315,420 194,514 7 0.005 4837

8 Azin Rang 337,194 249,140 5 0.004 4972

9 Serv Rang 231,720 157,250 5 0.006 3564

10 Rangin 145,360 87,370 8 0.009 1904

11 Marron 301,780 246,100 6 0.006 4341

12 Asan Rang 263,170 193,500 7 0.005 3957

13 Shabrang 374,950 272,160 5 0.007 5018

14 Soor 151,300 101,183 4 0.007 2013

15 Takrang 349,100 291,590 5 0.003 4948

16 Gita Asa 157,790 117,830 7 0.005 3269

17 Pars 371,800 278,100 7 0.007 4991

18 Arovin 245,400 181,500 6 0.004 3768

Table 4 The data set associated with stage 3

Number of supply
chain

DMUs Stage 3

Input Outputs

The number of
personnel

Annual sale (Ton) Annual income
(100,000 Rial)

1 Sayan 15 4517 6,014,200

2 Hermes 9 3301 4,485,145

3 Rangvareh 12 4195 5,593,129

4 Bajak 19 6205 8,315,590

5 Azin 10 4158 5,728,000

123



Annals of Operations Research

Table 4 (continued)

Number of supply
chain

DMUs Stage 3

Input Outputs

The number of
personnel

Annual sale (Ton) Annual income
(100,000 Rial)

6 Hana Rang 7 2217 2,814,720

7 Hermes Fam 13 4837 6,375,100

8 Azin Rang 15 4961 6,605,240

9 Serv Rang 10 3564 5,057,470

10 Rangin 7 1817 2,275,000

11 Marron 11 4301 5,751,260

12 Asan Rang 9 3915 5,382,000

13 Shabrang 14 4978 6,745,000

14 Soor 8 2013 2,617,000

15 Takrang 13 4895 6,738,000

16 Gita Asa 10 3175 4,309,000

17 Pars 14 4997 6,527,000

18 Arovin 12 3753 4,817,100

The following optimistic and pessimistic models have been customized based on Model
(1) and Model (2) for the presented case study. Here, DMUo is considered as the under
evaluation unit. It is also assumed that intermediate stochastic variables are independent.
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4.1 Results and discussions

“In the case study*, *we applied two customized optimistic and pessimistic models con-
sidering dissimilar data such as integer and real valued inputs and outputs, good and bad
outputs, stochastic intermediate products and the hybrid data”. To compute the efficiency
scores, we used Lingo 18.0 software on an Intel CORE i5 processor. Tables 5, 6, 7, 8 and 9
present the efficiency scores of sustainably resilient SCs of 18 paint and coating producers
with α � 0.001, 0.01, 0.05, 0.1 and 0.3, respectively. The tables show divisional and overall
efficiency scores for three stages using the proposed optimistic and pessimistic models. As
it is seen, Rangin company is the most efficient DMU with overall efficiency 1.414 when we
apply α � 0.001. Moreover, while the most efficient DMU with α � 0.01, 0.05 and 0.1 is
Asan Rang company, when we apply α � 0.3 Hermes company becomes the most efficient
unit with efficiency scores 1.06863. Arovin has the worse performance with efficiency score
0.962 among 18 paint and coating producerswithα � 0.001, 0.01, 0.05, 0.1 and 0.3.A closer
look at results shows that when we apply optimistic models with α different levels, the major-
ity of DMUs are efficient. However, when we apply pessimistic models less DMUs become
efficient. Based on the geometric average efficiency results for α ∈ {0.001, 0.01, 0.05}, the
unique raking of 18 paint and coating producers are as follows:

DMU12 � DMU2 � DMU5 � DMU11 � DMU15 � DMU7 � DMU6

� DMU13 � DMU3 � DMU9 � DMU17 � DMU16 � DMU10

∼ DMU4 � DMU8 � DMU14 � DMU1 � DMU18

Here, the symbol � means “superior to” and the symbol ∼ represents “indifference”.
Comparing efficiency scores with α � 0.1 and α − 0.3 demonstrates the ranking of DMUs
has changed significantly when we compute geometric average efficiency. This means that
when α level changes considerably, it may influence the performance of DMUs. Another
important finding of the current study shows all DMUs are efficient at stage 2 with α �
0.001, 0.01, 0.05, 0.1 when we apply the optimistic models. Nevertheless, companies of
Rangvareh, Serv Rang and Asan Rang are not efficient at stage 2 with α � 0.3 using the
optimistic models. Furthermore, results show that our proposed optimistic and pessimistic
models provide decision-makers with a complete rank of DMUs.

4.2 Managerial implications

The stochastic double frontier analytic model developed in the current article can assist
practitioners in several ways. Given unexpected situations such as disasters the performance
of SCs can be very vulnerable.Mangers and decisionmakers of SCs should be able tomanage
these situations and reduce stochastic risks in order to benefit from a resilient performance.
As such, our proposed model is an appropriate tool for evaluating performance of SCs under
uncertain environment andmitigating stochastic risks.We usedCCP in our proposedmodel to
address uncertainty for assessing sustainably resilient supply chains. In this case, uncertainty
was analyzed by using different values of Alpha. As can be seen in the results tables, the
performance of sustainably resilient supply chains can be changed by changingAlpha values.
Furthermore, managers and decision makers are interested in considering three sustainability
dimensions including economic, ecological and social in assessing their SCs. The model
presented in this paper take these dimensions into account and satisfy different stockholders’
needs aimed at sustainable development. The developed model not only provides managers
and decision makers with divisional assessment but also overall assessment. This in turn
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helps them to identify inefficiency resources and take some measures to improve their SCs’
efficiency. By doing so, managers and decisions makers in organizations can be aware of
which stage of their SC need to be improved. Moreover, they can better plan with respect to
their priorities at each stage and allocate the required resources for performance improvement
under different levels of uncertainty. In addition, evaluating performance in complex settings
such as SCs is amajor challenge for management. This paper demonstrates howwell network
DEA models including our developed model can consider all interactions in SCs’ structures
in an integrated and provide an accurate assessment of SCs’ performance. It should be noted
that the proposed models can be applied in many other complex settings in the presence of
uncertainty such as stock markets and humanitarian supply chain where managers deal with
considerable capital and people’s life. Also, in any organization management is interested in
taking significant decisions based onprecise and true results.As themodel proposed considers
all type of data in measuring performance in a network structure, it provides management
with such results to take any decisions. In this regard, it is clear that taking wrong decisions
using wrong results can impose irreparable costs to organizations. Last and but not least, the
results show that which supply chains are efficient with respect to the presented definitions
under different situations and can be considered as benchmarks for other supply chain to
improve performance divisional and overall.

5 Conclusions and future research

Sustainable SCs and resilient SCs have addressed separately over the last two decades. How-
ever, the relation of sustainability and resilience in SCs has not been addressed adequately to
date despite its substantial role in improving organizations’ performance. Integrating sustain-
ability and resilience concepts into SCs provides several advantages such as costs reduction,
disruptions decrease, employees’ spirit increase, production quality improvement, customer
satisfaction increase and environmental performance improvement (Kaur et al., 2020).Hence,
managers and decisionmakers of organizations need to take sustainability and resilience con-
cepts into account their strategic decisions (Miller & Engemann, 2019).

In this paper we presented a new stochastic double frontier network DEA to evaluate
the performance of sustainably resilient SCs. The developed model takes both optimistic
and pessimistic efficiency measures into account for computing performance results. The
model has been developed based on different concepts such as weak disposability, chance-
constrained programming, and discrete dominance in the network DEA context. Dealing
with different type of data such as stochastic, ratio, integer, desirable and undesirable is
another significant advantage of the proposed model. We also applied aggregated Farrell type
efficiency measure for providing a complete rank of DMUs which shows the discrimination
power of the proposed model. The results of also show how well our developed model can
evaluate the performance of sustainably resilient SCs of 18 paint and coating producers.
Based on the model proposed in this study we provide some research avenues. A research
study can be developing a new double frontier network DEA considering fuzzy data suitable
for uncertain environments. Another future research is to develop other network DEAmodels
such as SBM and range adjusted measure (RAM) and contrast the results obtained with the
results of this study.
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