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Average paraxial power of a lens 
and visual acuity
Stephen B. Kaye 1*, Jamila Surti 2 & James S. Wolffsohn 2

To provide a solution for average paraxial lens power  (ApP) of a lens. Orthogonal and oblique sections 
through a lens of power F  were reduced to a paraxial representation of lens power followed by 
integration. Visual acuity was measured using lenses of different powers (cylinders of − 1.0 and − 2.0D) 
and axes, mean spherical equivalent (MSE) of S + C/2,  ApP and a toric correction, with the order of 
correction randomised. A digital screen at 6 m was used on which a Landolt C with crowding bars 
was displayed for 0.3 s before vanishing. The general equation for a symmetrical lens of refractive 
index (n), radius of curvature R, in medium of refractive index n1, through orthogonal ( θ ) and 
oblique meridians ( γ ) as a function of the angle of incidence ( α ) reduces for paraxial rays ( α ∼ 0 ) 
to F

n,R(α, θ , γ ) |α∼0
=

n−n1

R

cos
2 θ cos2 γ . The average of this function is F

n,R(α, θ , γ ) |α∼0
=

n−n1

4R
 

providing a solution of F
4

 for  ApP.For central (p = 0.04), but not peripheral (p = 0.17) viewing, correction 
with  ApP was associated with better visual acuity than a MSE across all tested refractive errors 
(p = 0.04). These findings suggest that F

4
 may be a more inclusive representation of the average paraxial 

power of a cylindrical lens than the MSE.

The power and focal length of a lens are a function of the angle of incidence. In clinical optics, however, treat-
ment of power has largely been limited by paraxial approximations. The search for a suitable definition of power 
of a non-spherical symmetrical lens (e.g., a cylindrical lens) has a long history in medical  optics1–5. Measure-
ment of power away from the principal meridian (curvital and torsional power) has also depended on further 
approximations, such as the exclusion of the square of the sag height when calculating power of a  lens1. Use of 
this non-constant approximation, however, may lead to incorrect assumptions, for example, that two equivalent 
orthogonal (right angle) cylinders are precisely equivalent to a spherical  lens1. Although the spherical equivalent 
or more commonly the mean spherical equivalent (MSE) remains a useful scalar term for the average paraxial 
representation of lens power in the individual case, Harris first suggested that there may be other scalar terms 
for the ‘spherical equivalent’ and proposed the term nearest equivalent sphere (NES)3. In support of this, it has 
been shown that there are other representations of the average power of a lens if the square of the sag height is 
not excluded when calculating the radius of a  lens1.

One of the problems with the current formula used for the MSE, that is, S + C
2
 , is that it does not include or 

represent non-orthogonal oblique rays; it is entirely based on orthogonal  sections1. Naeser and Hjortdal referred 
to this in the context of ‘for any meridian of a spherocylinder, the combined spherical equivalent, net curvital and 
net torsional powers, direct incoming wavefronts into the two orthogonal focal lines’5. It is not uncommon for a 
lens to be tilted to the incident rays with oblique rays becoming more dominant as the lens is further tilted. The 
analysis of oblique or torsional rays has been discussed in detail by many authors including  Pascal4, Naeser and 
 Hjortdal5,  Beldowke6,  Keating7,8,  Harris9,10,  Goldstein11 and  Bennet12 amongst many others. In particular, Har-
ris, has provided solutions to the effective power of a tilted lens as power vectors and as a general tilt  matrix13,14.

Although both orthogonal rays away from the principal meridian and oblique rays do not come into focus 
at the same point as meridional rays, they are still likely to have an effect on vision. Inclusion of orthogonal 
non-meridional rays is the basis of the MSE which does not weight meridional rays in derivation of the average. 
Similarly, although the contribution of oblique rays to vision is unclear, it would be incorrect to exclude them in 
the quantification of a thin lens  system5–8.

In this article, solutions to the representation of power as a scalar quantity were developed and used to provide 
a paraxial representation of the average power of a lens. A section through a lens was first considered, followed 
by rotation of the section through orthogonal and non-orthogonal oblique  meridians1. The curves resulting 
from orthogonal and oblique sections were considered as 2 dimensional surfaces. A function to model these 
sections was further developed to provide a solution for average paraxial power  (ApP) of a lens, which included 
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non-orthogonal oblique rays. The resultant equation for the  ApP was then compared to the current definition 
for the MSE based on a clinical study.

Methods
Power of a lens. A section through a lens cylinder (Fig. 1) of radius R in the principal meridian, the orthog-
onal and non-orthogonal oblique sections at angles θ and γ away from the principal meridian, result in elliptical 
sections with major radii (semi-diameters) R sec θ and R sec γ , respectively. The respective angles subtended are 

Figure 1.  Sections through a lens cylinder. Principal meridian of radius ( R ). (A) Orthogonal, R sec θ , (B) 
oblique, R sec γ and (C) Orthogonal-oblique section R sec θ sec γ.
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within the intersecting plane rather than the normal to the surface in 3D space. That is, it is the projection onto 
the 2D plane (or viewed as the ray of light travelling through the plane itself).

A ray travelling medium n1 , into and through a section of a lens segment of refractive index n , focal length 
( f  ) and back vertex power ( F ), (Fig. 2). It has been shown that a section of the lens defined as an intersection of 
the lens with a plane (Fig. 2) can be represented by the following equation for an ellipse,

where θ is the angle of rotation of the intersecting plane about the z-axis and γ is the angle of rotation of the 
intersecting plane about the x-axis. In the principal meridian, θ = γ = 0 and the section is circular of radius R
.1 A ray parallel to the axis of the lens ( x-axis in Fig. 2) subtends an angle of incidence, α with the normal to the 
curve within the intersecting plane at a point z where z = sec θ sec γ

√
R2 − x2,

Reduced focal length for a distant object. The back vertex focal length in medium n (reduced focal 
length), is fn with nf  the back vertex power (F), a measure of the change in vergence which that surface imposes 
on light rays. Parallel light (distant object, φ = 0 ) is used as the reference point given that the incident light will 
have zero vergence so that the vergence after passing through the surface will be equivalent to the power of that 
surface.

It has previously been  shown1 that,

where, the maximum angle of incidence (that is a marginal ray) is from Fig. 2,

It has also been shown that the same procedure can be used to determine the focal length or power for any 
defined surface and be used to determine the average power of any defined  surface15.

For paraxial rays, β = n1
n ∝ , sin α ∼ α , tan α ∼ α , cosα ∼ 1, tan2α → 0 and Eq. (2) reduces to

x2

R2
+

z2

R2 sec2 θ sec2 γ
= 1

δ′

(1)Fn,R(α, θ , γ ) =
n

R







tan (α − β)
�

sec2 θ sec2 γ tan2 α + 1

sec2 θ sec2 γ tan α − tan (α − β)

�
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�
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,

tan αmax =
Y

√
R2 − Y2 sec θ sec γ

.

Figure 2.  A ray travelling through a section of a lens segment of refractive index n , (in medium n1 ) and radius 
R , with origin at C = (0, 0) of a Cartesian coordinate system with horizontal and vertical coordinates x and z 
respectively. α is the angle of incidence from a distant object ( φ = 0 ) to the normal passing through g′ and β 
is the angle of refraction. The angle subtend on the axis is (α–β). For light from a near object is φ > 0 , and the 
angle subtended on the axis is (α–ψ)1. For a symmetrical lens e.g., a cylinder, there is rotational symmetry so 
that both θ and γ are periodic.
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Equation (2) can be used to determine the power of any particular section through a  lens1.

Average power. The current formula used to derive the average power or MSE for a lens cylinder only 
includes orthogonal rays or sections ( γ = 0 ) that is, Fn,R(α, θ , 0) = n−n1

R cos2 θ.1
The MSE has been shown to be derived from the average of a function through orthogonal  meridians1, that 

is, Fn,R(0, θ , 0) which from symmetry considerations is given by

F therefore, is half the power in the principal meridian F(0) = (n−n1)
R .

Thus, the average approximated power of a cylindrical lens through orthogonal meridians is half of the lens 
power in its principal  meridian1. This is the justification for using the formula, S + C

2
 , for calculation of the MSE 

for a spherocylinder combination of lenses. Inclusion of non-orthogonal oblique meridians requires a further 
average over non-orthogonal oblique meridians for  equation5 as follows.

For paraxial rays, the average through all orthogonal and non-orthogonal oblique meridians (rotational 
symmetry 0 to π

2
 ) is

Note from the above that Fp = F
4
.herefore, the  ApP through orthogonal and non-orthogonal oblique merid-

ians would be F
4
 . This suggests that for a spherocylindrical lens combination (S/C×a ), after transforming into 

crossed-cylinder form i.e., the C1xa/C2xa±90 ,  ApP could be represented by C1

4
+ C2

4
 that is C1+C2

4
 rather than 

C1 +
(C2−C1)

2
 . For example, +2/+ 2x90 or +4/− 2x180 or in cross cylinder form +2x180/+ 4x90 has a MSE 

of + 3 whereas  ApP using  equation7 would be 0.5+ 1 = 1.5D rather than +3.00D.
Note, that the general geometric (non-paraxial) solution for the average power for a symmetrical lens includ-

ing orthogonal and non-orthogonal oblique meridians has been shown to be approximately 1
3
 of the power of the 

lens in its principal  meridian1. A solution to the average power of a section of any defined surface i.e., without 
the requirement for symmetry has been  provided15.

Clinical study. Fifteen young adults (average ± standard deviation 22.0 ± 6.5  years, 3 males, 12 female) 
with no history of ocular disease or injury, normal binocular vision (no history of strabismus or motility dis-
orders), having less than 0.50D of astigmatism (to ensure the habitual adaption to uncorrected astigmatism 
is  minimised16) and who had an acuity of 0.0 LogMAR or better in both eyes were recruited. The study was 
approved by the Aston University Research Ethics Committee, all subjects gave their informed consent to take 
part and all methods were performed in accordance with the relevant guidelines and regulations.

Subjects were simulated with different levels of a refractive errors, using wide aperture (25 mm) cylindrical 
lenses of different powers and axes, including − 1.00 × 90, − 1.00 × 180, − 2.00 × 90, and − 2.00 × 180 in a ran-
domised order, in a trial frame along with lenses that corrected their refractive error, the MSE (S + C/2), the  ApP 
( C1+C2

4
 ) and full toric correction using the opposite cylinder (oriented in the same direction as the simulating 

lens) also in a randomised order. Visual acuity was measured monocularly, using an automated visual acuity test, 
developed by Wolffsohn Research (https:// www. wolff sohnr esear ch. com/; Belfast, UK). The chart was presented 
on a digital screen placed 6 m away and displayed a Landolt C with crowding bars (Fig. 3), for 0.3 s before van-
ishing, after which subjects had unlimited time to determine the orientation of the gap in the C whether that be 
right, left, up or down, as part of a four-alternative forced-choice task and if uncertain, were encouraged to guess.

The target started off as a 0.3 logMAR letter size, decreasing if the response is correct and increasing if wrong, 
requiring 3 reversals to find the final acuity level. The final acuity was determined, based on the percentage of 
times the response was correct at each letter size, to the nearest 0.01logMAR.

Once subjects felt comfortable and had practiced the task, acuity was measured with central gaze first. This was 
repeated twice, for each level of correction, to calculate an average level of acuity. Subjects were then instructed 
to look at a target 30 degrees off centre horizontally to the left (nasally) and to determine the orientation of the 
target. Testing for peripheral vision was also repeated twice to calculate an average level of acuity. Measurements 
taken for the off-centre gaze (peripheral vision) were only possible with the powers − 1.00 × 90 and − 1.00 × 180 
as any power higher distorted the view and the target was unable to be seen in the subject peripheral gaze.

Statistical analysis. Parametric statistics were applied as the data were not significantly different from a 
normal distribution (Kolmogorov–Smirnov test p > 0.05). A between factors (cylinder levels: − 1.00 or − 2.00; 
axis 90/180; correction: traditional MSE,  ApP, toric correction; and repeats) repeated measures analyses of vari-
ance (ANOVA) were conducted for central vision. A second repeated measures between factor ANOVA were 
conducted between central and peripheral vision with a cylinder level of − 1.00D with other factors (axis: 90/180; 
correction: traditional MSE,  ApP, toric correction; and repeats). Student t-tests were used to determine the dif-

(2)Fn,R(α, θ , γ ) =
n

R

α
(

1− n1
n

)

α sec2 θ sec2 γ
=

n− n1
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2 θ cos2 γ
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∫
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ferences between correction approaches. A p-value of less than 0.05 was considered statistically significant and 
a correction made for multiple tests.

Results
Central vision. For central viewing, better acuity levels were achieved with lower induced cylinders 
(F = 42.85, p < 0.001) and with the toric correction compared to either MSE and or  ApP (F = 64.52, p < 0.01). 
There was a significant interaction between these factors (F = 13.17, p < 0.01) that is, the difference in the reduc-
tion in acuity increased as the refractive error increased (Fig. 4). There was no difference in visual acuity between 
the two orientations of the induced cylinders i.e., 90 and 180 (F = 0.07, p = 0.80), or with repetition (F = 3.44, 
p = 0.09), that is, there was no learning effect. For central viewing, there was a significant difference between 
MSE and  ApP across all refractive errors, with the  ApP associated with a better visual acuity (p = 0.04) (Fig. 4). 
The toric correction gave better visual acuity across all refractive errors than either the MSE or  ApP (p < 0.001).

Peripheral vision. For peripheral vision, acuity levels were lower than central vision (F = 92.77, p < 0.01; 
Fig. 4), and the differences with correction approach (F = 23.87, p < 0.01) were still evident, with no difference 
in the induced cylinder axis (F = 3.07, p = 0.10), or with repetition (F = 0.29, p = 0.60). There was a significantly 
worse acuity with either MSE or  ApP corrections, compared to a toric correction (with the opposite cylinder), 
but this was less evident with peripheral (p = 0.03) than central vision (p < 0.01). For peripheral vision, there was 
no significant difference between the MSE and  ApP across the cylinder axes (p = 0.17, Fig. 4).

Figure 3.  The target stimulus—Landolt C with crowding bars. This appeared at the centre of the screen in one 
of four orientations (right, left, up, or down), gradually changing size according to performance. Subjects were 
asked to report the perceived position of the gap in the C.

Figure 4.  Acuity with central and peripheral target location observed with an induced cylinder and correction 
of MSE, ApP or toric correction of opposite power. Error bars = 1 S.D. N = 15.
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Discussion
Although lacking sensitivity, a scalar measure of refractive power such as the MSE is commonly used to compare 
or evaluate refractive powers. The average paraxial power of a lens has until now, been based only on orthogonal 
sections producing the familiar F/2 or for a spherocylinder combination of lenses, S + C

2
 , commonly referred 

to as the MSE. Both the MSE and  ApP provide a scalar value i.e., not affected by direction and as such, both are 
representative of a spherical equivalent or more correctly a NES.

In this study a formula for the  ApP of a lens that includes both orthogonal and oblique rays was derived. We 
have shown that if oblique sections or rays are included, then the  ApP across a lens is F/4 or for spherocylinder, 
C1+C2

4
 . These findings suggest that a lens cylinder of power C in the principal meridian, has a smaller average 

power than previously considered, that is, of C
4
 rather than C

2
 . The average (paraxial) power of a spherical lens 

is the power of the lens itself and these findings apply to a symmetrical lens cylinder. The approximation of the 
power of a lens (geometric optics) has been  addressed1. It is important to note, that the conversion from cross 
cylinder form to S/C × A, rests on the incorrect assumption that the shape formed by the intersection of two 
equal right-angle cylinders is a sphere, when it is in fact a bicylinder or a Steinmetz solid and not a sphere. For 
example, if a subject is refracted using cylinders and is found to have an error of + 2.00 × 90 and + 4.00 × 180, 
then the average paraxial power  (ApP) is + 0.50 + 1.00 = 1.50D. The confusion arises if the assumption is made 
that + 2.00 × 90 and + 4.00 × 180 equate to a sphere of + 2.00 and a cylinder of + 2.00. It may well be that the subject 
does have a spherical error of + 2.00 but this cannot be assumed from two cross-cylinders, i.e., two equal cross 
cylinders do not necessarily equal a sphere.

Although debated, it has been reported that cylinders provide central blur that is not much different from 
the  MSE17,18 but at low blur strengths relevant to refraction, astigmatism affects visual acuity more than defocus 
and that the degree of blur from cylinders, is dependent on the axis of the  cylinder19,20.

It is important to note that in the derivation of the MSE and  ApP, the average does not give different weights to 
meridional rays nor are limits imposed on the extent of the orthogonal or oblique rays. As information develops 
to quantify the relative contribution of rays away from the principal median to vision (central and peripheral) it 
will then be possible to weight or restrict rays in the formulation of the average power of a lens.

Which of these systems provide a better scalar measure of power for visual blur, that is, to what extent does 
MSE ( S + C

2
 ) and  ApP ( C1+C2

4
) affect blur for a person with best corrected acuity using a spherocylinder cor-

rection of SC × a ? To address this, two solutions for the mean power of a lens, MSE and  ApP, were compared in 
a clinical study, measuring both central and peripheral (30 degrees) visual acuity. Both central and peripheral 
vision reduced as the refractive error increased but that central vision was significantly less affected using the 
 ApP as a correction rather than the MSE; hence  ApP led to a significantly less reduction in central acuity than 
the MSE. Central visual acuity is not limited to only orthogonal rays as even with an acuity of 0.00 logMAR, 
the visual angle subtended is 60 s of arc. In addition, a difference was demonstrated between the reversal of the 
induced toric and MSE and F/4, indicating that the methodology was sensitive to detect change due to refrac-
tive correction. Reversing the toric didn’t fully restore distance acuity, presumably due to the aberrations and 
reflections from the additional two trial lenses.

There are limitations to the study. The derivation of the average power of a lens  ApP does not differentially 
weight meridional rays or rays close to the principal meridian. The same however, applies to the MSE. Further 
work may seek to modify or weight such averages particularly if the effect of oblique and non-meridional 
orthogonal rays on vision is better elucidated. It has been suggested that low frequency contrast detection may 
determine the position of the gap in a Landolt  C21, but this is still more consistent than traditional capital letter 
charts and the participants acted as their own control. Further work is needed to explore additional refractive 
errors, including cylinders of higher powers and at multiple axes away from 90 and 180 degrees and using an 
eye tracker to help monitor gaze. For peripheral acuity 30 degrees eccentricity was explorated. This may account 
for the absence of a difference between MSE and  ApP for peripheral acuity, as measurements taken for off-centre 
gaze (peripheral vision) at 30 degrees were only possible with the powers -1.00 × 90 and -1.00 × 180, as any power 
higher distorted the view and the target was unable to be seen in the subject peripheral gaze. Smaller angles, 
therefore, would be preferable, that is, 2.5, 5 and 10 degrees as this will enable higher powers with less distortion 
than occurred at 30 degrees. In addition, it would be of interest to tilt the lens systems (toric, MSE and  ApP) from 
zero through to 30 degrees for central vision as this would increase the contribution of oblique rays.

In this study a solution for the  ApP of a symmetrical lens that includes oblique rays was provided. MSE and 
 ApP was then compared in a clinical study, measuring both central and peripheral visual acuity. The method for 
 ApP led to lesser reduction in central visual acuity compared to using MSE. Subject to further studies, this would 
suggest that a  ApP of C1+C2

4
 may provide a better scalar measure than the traditionally clinically use MSE of S + C

2
 

and the  ApP, therefore, may be a better approximation of the NES than the MSE. Although further investigation 
is needed, these findings would suggest as an example, that if a person is unable to tolerate a full toric spectacle 
correction, then using the  ApP i.e., half the MSE, may provide a better level of visual acuity than the MSE.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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