
PHYSICAL REVIEW FLUIDS 8, 054604 (2023)

Vorticity locking and pressure dynamics in finite-temperature
superfluid turbulence

Jason Laurie 1,* and Andrew W. Baggaley 2,†

1Department of Mathematics, College of Engineering and Physical Sciences, Aston University,
Aston Triangle, Birmingham, B4 7ET, United Kingdom

2Joint Quantum Centre (JQC) Durham–Newcastle, School of Mathematics and Statistics,
Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom

(Received 25 August 2022; accepted 12 April 2023; published 9 May 2023)

We present a numerical study of finite-temperature superfluid turbulence using the vor-
tex filament model for superfluid helium. We examine the phenomenon of vorticity locking
between the normal and superfluid components across a wide range of temperatures, using
two different structures of external normal fluid drive. Our analysis is restricted to one-way
coupling between the two components, and subject to this simplification, we show that
vorticity locking increases with temperature leading to the superfluid flow being more
influenced by the characteristics of the normal fluid. This results in stronger superfluid
polarization and deviations from Gaussian statistics with a more probable occurrence of
extreme fluctuations. We also examine how these properties influence the pressure field
and attempt to verify a longstanding Pk ∝ k−7/3 theoretical quantum signature within the
spatial pressure spectrum.
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I. INTRODUCTION

Understanding the complex dynamics of finite-temperature superfluid turbulence is one of the
utmost challenges for condensed-matter fluid dynamicists. There are a number of motivating
factors for this, including recent experiments highlighting important connections between turbu-
lence in quantum fluids and that of classical fluids [1], as well as regimes in which there are
fundamentally different physics between the two [2]. This spurs a long-term hope that the dis-
creteness of superfluid turbulence will help inspire breakthroughs of unsolved problems in classical
turbulence theory. Moreover, we are discovering a growing number of physical systems where
finite-temperature superfluid motion is believed to exist and is intrinsically important for under-
standing physical observations, these include neutron stars [3], dark matter [4], and also the concept
of holographic duality providing a link between superfluid turbulence and the physics of black
holes [5,6].

The two-fluid description [7–9] provides a theoretical framework for describing the remarkable
two-fluid system (consisting of a viscous normal fluid fully coupled to an inviscid superfluid com-
ponent) observed in finite-temperature superfluid helium and the turbulent motion it can undergo.
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There is a coupling between the two fluids through mutual friction, principally localized at the center
of quantum vortices as well as through the overall pressure field. It is currently an experimental
challenge to try and ascertain dynamics of each individual component through the limitations
of experimental probes, such as second sound detection [10,11], hot-film or Pitot tubes [12,13],
pressure transducers [14], or tracking of tracer particles [15,16]. In this paper we use state-of-the-art
numerical simulations to probe finite-temperate superfluid turbulence in a way compatible with
experimental measurements to discover new ways to interpret and analyze both fluid components
of superfluid turbulence.

In a series of pioneering experiments in the 1950s, Vinen showed that turbulence in a superfluid
can be generated in the laboratory by applying a heat flux to generate a counterflow between the
normal and superfluid components [17–20]. While Vinen’s early experiments were the first to
realize superfluid turbulence, the wider classical turbulence community’s interest was piqued by
the experimental results of Maurer and Tabeling [1], who investigated turbulence in helium-4 at
temperatures ranging between 1.4 K–2.3 K, i.e., both above and below the superfluid transition tem-
perature Tλ ≈ 2.17 K under which superfluidity exists. Even at temperatures where the superfluid
fraction is above 90% their results were consistent with Kolmogorov’s 1941 theoretical prediction
for the k−5/3 energy spectrum of a three-dimensional (3D) fluid. Subsequent experiments [21] have
confirmed that a similar agreement between normal and superfluid components is observed for
higher-order statistics. What makes these results particularly interesting is that quantum mechanics
constrains any rotational motion in the superfluid component to thin vortex lines or filaments, each
carrying only a single unit of quantum of circulation κ = 9.97 × 10−4 cm2/s in helium-4 meaning
that vorticity is a discretized field in the superfluid component. Moreover, these vortex filaments
are microscopic holes of the superfluid density of radius a ≈ 10−8 cm each emitting an irrotational
inviscid fluid flow of velocity magnitude v = κ/(2πr) at a distance r perpendicular from the axis
of rotation.

The appearance of the same classical Kolmogorov energy spectrum in the superfluid compo-
nent, known also as the quasiclassical Kolmogorov energy spectrum, should only occur within
an inertial range of scales where the effects from large-scale external forcing or dissipation are
negligible. This suggests we may observe a correlation between the velocity fields of the two
components. Numerical results suggest this manifests itself in a locking of vorticity with the
structure of the quantized vortex tangle directly mimicking structures in the normal fluid vorticity
field [22]. The study of Morris et al. [22] only considered a single temperature of T = 2.1 K,
where the superfluid component represents only ≈25% of the total fluid density. More recent
experimental [14] and theoretical [23] work has shown that local measurements of the pressure
field can provide deep insights into the topological properties of the superfluid component and
tangle therein. Indeed, the use of Pitot tubes [13] is a common strategy for experimentalists to
extrapolate the superfluid velocity and high-order statistics in two-fluid experiments of superfluid
helium. Motivated to revisit the work of Morris et al. [22], we investigate the phenomenon of
vorticity locking across a wide range of superfluid temperatures paying careful attention to the
characteristics of the pressure distribution in the system. We show that vorticity and velocity
locking between the normal and superfluid components is present in simulations using both
stationary and time-dependent normal fluid models. We further highlight the important role that
temperature plays in this locking with correlations between the velocities of the two components
becoming weaker at low temperatures and particularly emphasized at small scales. When studying
the pressure dynamics we confirm our previous theoretical work and the experimental study of
Rusaouen et al. [14], which associated strong deviations from Gaussianity in the pressure field
with coherent bundles of quantized vortices. Here we go further and suggest that with increasing
temperature, deviations from Gaussianity become increasingly extreme due to greater organization
of the quantized vortex tangle. Finally, we examine the pressure spectrum across our simulations
and suggest that this could be used as a tool to investigate the structure of a tangle of quantized
vortices.
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II. MODELS OF FINITE-TEMPERATURE SUPERFLUID TURBULENCE

Finite-temperature superfluid turbulence can be modeled by a two-fluid description of Landau
and Tisza [7–9], where thermal excitations are described by a viscous normal fluid that is in
coexistence with an inviscid superfluid, coupled through a mutual friction force. For scales larger
than the mean intervortex distance between neighboring quantized vortices, a common phenomeno-
logical model has been the HBVK equations [24,25]. The HBVK model utilizes the traditional fluid
dynamics macroscopic description of fluid flow (the Navier-Stokes equations) with each component
associated with separate velocity and density fields, denoted vn and ρn for the normal fluid and vs

and ρs for the superfluid, respectively, with total fluid density ρ = ρn + ρs whose ratio is strongly
temperature dependent, with ρn/ρs → 0 in the zero-temperature limit. In the HVBK equations the
normal fluid is modeled by the Navier-Stokes equations coupled via a mutual friction term Fns to a
coarse-grained inviscid superfluid component vs modeled by the Euler equations:

∂vn

∂t
+ (vn · ∇)vn = − 1

ρ
∇P + ν∇2vn + ρs

ρ
Fns, (1a)

∂vs

∂t
+ (vs · ∇)vs = − 1

ρ
∇P − ρn

ρ
Fns, (1b)

∇ · vn = 0, ∇ · vs = 0. (1c)

Here, P is the pressure field, ν is the kinematic viscosity of the normal fluid component, and Fns is
the mutual friction term that provides coupling between the normal and superfluid components and
acts principally at the regions of high superfluid vorticity.

The HBVK model has shown success in probing the transition to turbulence in superfluid
counterflow [26] and regimes of superfluid turbulence, which do not support an energy cascade [27].
However, due to its coarse-grained description of the superfluid component it produces a continuous
field representation of the superfluid vorticity that fails to resolve details close to or below the mean
intervortex spacing � (the average distance between neighboring quantized vortices).

An alternative mesoscopic model for the superfluid velocity vs was introduced by Schwarz
[28,29] who considered the dynamics of one-dimensional vortex filaments through the vortex
filament model (VFM). This can then be coupled to the Navier-Stokes equations (or indeed any
analytic model) for the normal fluid component through an associated mutual friction term. The
advantage of this method is that it preserves the discreteness of the superfluid vorticity field and
permits a description of the superfluid velocity at scales far below the intervortex spacing (unlike
the HBVK equations) leading to a non-coarse-grained superfluid velocity field.

In the VFM an evolution equation for the vortex filaments is given by the balance of the Magnus
and drag forces acting on a vortex filament:

ds
dt

= vs + αs′ × (vn − vs) − α′s′ × [s′ × (vn − vs)], (2)

where s(ξ, t ) is the position of the one-dimensional space curves representing quantized vortex
filaments in 3D Euclidean space. The mutual friction with the normal fluid is described by the last
two terms governed by the nondimensional, temperature-dependent friction coefficients α and α′,
s′ = ds/dξ is the unit tangent vector at the point s, ξ is arc length, and vn is the normal fluid velocity
at the point s.

The velocity of the superfluid component vs can be decomposed into a self-induced velocity
generated by the vortex tangle vsi

s , and an external superfluid flow vext
s such that vs = vsi

s + vext
s .

Here, the self-induced velocity vsi
s of the vortex line at the point s, is computed using the Biot-Savart

law [30]

vsi
s (s, t ) = κ

4π

∮
L

(r − s)

|r − s|3 × dr, (3)
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where the line integral extends over the entire vortex configuration L. The external superfluid flow
vext

s is an externally imposed irrotational flow arising through either an excitation mechanism of
the superfluid component or through the conservation of total mass of helium-4 in the presence
of a mean normal fluid flow. In the VFM, the superfluid vorticity field is discretized through the
1D vortex filament description, and while a (resulting) continuous superfluid velocity field can be
recovered via Eq. (3), it can contain spurious values arising from the discretization of the filaments.

The coaction of the two velocity components can most predominantly be observed through
the fluid pressure P. The relationship between the pressure and the two fluid components can be
determined through the two vorticity fields. This can more readily be shown by taking the divergence
of the HVBK equations and using incompressibility of the fluid flow. One can relate the pressure
P to the vorticity through a Poisson equation involving the spin tensor Wi = [∇vi − ∇vT

i ]/2
and the strain tensor Ei = [∇vi + ∇vT

i ]/2 for each superfluid and normal components, i = s, n,
respectively,

∇2P = ρs

2
(Ws : Ws − Es : Es) + ρn

2
(Wn : Wn − En : En). (4)

Here, : denotes the double dot product between two matrices defined as A : B = ai jbi j with index
summation implied for the matrix elements ai j and bi j . The contributions arising from the spin
tensors is related to the vortical motion of the fluid components proportional to their respective fluid
densities. Terms involving the strain tensor lead to oppositely signed contributions determined by
the local stretch and strain of the fluid flow. What is most evident is that in high vorticity regions
the right-hand side of Eq. (4) will be overwhelmingly positive. Consequently, the pressure field
(both temporally and spatially) contains important information on the distribution of vorticity across
scales.

III. OUR NUMERICAL APPROACH

We perform numerical simulations using the vortex filament method to study the correlation
between the normal fluid and superfluid vorticity fields, and subsequently the pressure field dynam-
ics across a range of experimentally relevant temperatures. We use the model of Schwarz, Eq. (2),
with no external superfluid flow vext. Our calculations are performed in a periodic cube of width
D = 0.1 cm. The numerical technique to which vortex lines are discretized into a number of points
s j for j = 1, · · · N held at a minimum separation �ξ/2, compute the time evolution, desingularize
the Biot-Savart integrals, evaluate vs, and algorithmically perform vortex reconnections when vortex
lines come sufficiently close to each other, are described in detail in previous papers [31,32]. The
Biot-Savart integral is computed using a tree-algorithm approximation [31] with opening angle set to
θ = 0.2. We take �ξ = 2.5 × 10−3 cm and apply a time step of 5 × 10−5 s for our time integration.

Ideally, we would consider a two-way coupling between the normal and superfluid components.
While a few studies have started to look at fully coupled two-fluid turbulence [33–35], these simu-
lations are still extremely computationally expensive, limiting the size of the vortex structures and
parameter space that can be studied. Moreover, there is a precedent for studying finite-temperature
superfluid turbulence with just a coupling from the normal to superfluid component [36–38] that
will permit a direct comparison to previous studies, indeed this is precisely the strategy used in
Ref. [22]. It is important, however, to add the caveat that while this may be more appropriate at the
high temperatures considered in Ref. [22], as we move to lower temperatures (and thus increasing
superfluid fraction) the validity of this model assumption becomes more questionable.

In many experimental studies of finite-temperature superfluid turbulence, the large-scale flow
is generated mechanically, for example, by pushing helium through pipes or channels [21], using
plungers, bellows, or by stirring it with grids [39], or via propellers [1]. Away from any boundaries
it is reasonable to expect the normal fluid to be in a state of homogeneous, isotropic turbulence.
We follow our previous work [40] and consider two different models for this turbulent normal fluid
velocity field. First, we take a well-established analytic model of a turbulentlike flow, comprised
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of the summation of random Fourier modes with an imposed Kolmogorov energy spectrum [41],
commonly referred to as the kinematic simulation (KS) model. More explicitly, we take

vn(s, t ) =
M∑

m=1

[(Am × km) cos (φm) + (Bm × km) sin (φm)], (5)

where φm = km · s + fmt , km are wave vectors and fm = √
k3

mEkm ) are angular frequencies. The
random parameters Am, Bm, and km are chosen so that the normal fluid’s energy spectrum follows
the modified von Kármán form

Ek = k4(1 + k2)−7/6e−1/2(k/kM )2
, (6)

which follows Kolmogorov’s scaling Ek ∝ k−5/3 in the inertial range kL < k < kη. We observe a
spectrum consistent with k−5/3 between kL ≈ 2π/D and kη ≈ 1100, which correspond to the outer
scale of the turbulence and the dissipation length scale, respectively. The synthetic turbulent flow
defined by Eq. (5) is solenoidal, time dependent. While it is not a solution of the Navier-Stokes
equation numerical studies of N-particle dispersion compare well with statistics obtained in experi-
ments and direct numerical simulations of the Navier-Stokes equation. With this being said, it does
lack the coherent vortical structures, which are an intrinsic feature of Navier-Stokes turbulence [42];
this motivates consideration and comparison to an alternative model for the normal fluid’s velocity
field.

Thus, results using this approach will be directly compared to a normal fluid profile vn obtained
from a numerical snapshot of classical homogeneous and isotropic turbulence generated by the
Navier-Stokes equations taken from the Johns Hopkins turbulence database [43]. The data set
consists of a velocity field discretized on a mesh of 1024 × 1024 × 1024 points. The estimated
Reynolds number of the velocity snapshot is Re ∼ (L0/η0)4/3 � 3025, where L0 and η0 are the
integral and Kolmogorov scales, respectively. The reason for using a single stationary snapshot for
the normal fluid velocity profile and not a time-dependent one is based solely on computational
constraints. As will be reported later in this paper, the stationarity of the DNS normal fluid flow
does have an observable impact on the mixing between the two fluid components, however, we do
not believe that it produces any nonphysical effects.

As the vortex filament method described above is a Lagrangian description, we are required to
define the normal fluid velocity at the location of the discretization points s j . For the KS model this
is straightforward from the analytic form of vn, for the DNS field we must interpolate the velocity at
each discretization points, and we do this using a trilinear scheme. Moreover, in order to study the
pressure field of the superfluid we must move in the other direction and move from a Lagrangian
to Eulerian frame of reference. To do this we apply the following prescription to coarse grain the
velocity field onto an Eulerian mesh: First, we generate the superfluid velocity field vs, and sample
both the superfluid b f vs and normal fluid vn velocity fields on a uniform three-dimensional spatial
mesh of size 128 × 128 × 128, using the tree approximation to the Biot-Savart integral, Eq. (3) for
vs and subsampling in the case for vn. We then coarse grain these fields by applying a Gaussian
low-pass filter G to each velocity component

v̄i(x, t ) =
∫

vi(x′, t )G(x − x′) dx′, (7)

where i = n, s and the Gaussian low-pass filter is defined through a filter scale l f as G(x) =
(2π l2

f )−3/2 exp(−|x|2/2l2
f ). The definition of the filter convolution in Eq. (7) implies that one

can simply multiply the Fourier harmonics of each velocity field by Ĝk = exp(−|k|2l2
f /2) where

we define the Fourier transform through G(x) = (1/2π )3 ∑
k Ĝk exp(ik · x). In our previous work

Ref. [23] we demonstrated that taking a filtering scale of l f = 2� was sufficient to remove any
discretization effects associated to the VFM while keeping enough detail to resolve important
turbulent statistics close to the mean intervortex scale �.
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TABLE I. Numerical measurements of the final turbulent states in the eight simulations we perform: four
forced by a static Navier-Stokes rendered normal fluid flow (DNS) and four using a kinematic simulation (KS)
normal flow. Each set is simulated at T = 1.3, 1.5, 2.0, 2.15 K.

DNS KS

1.3 K 1.5 K 2.0 K 2.15 K 1.3 K 1.5 K 2.0 K 2.15 K

α 0.0340 0.0720 0.279 0.893 0.0340 0.0720 0.279 0.893
α′ 0.0138 0.0177 0.0120 −0.192 0.0138 0.0177 0.0120 −0.192
|L| cm 20.746 20.581 21.467 20.382 21.490 20.881 21.867 22.099
� cm 0.00694 0.00697 0.00683 0.00700 0.00682 0.00676 0.00676 0.00673
vn

RMS cm s−1 1.225 0.787 0.426 0.341 2.057 1.322 0.624 0.404
vs

RMS cm s−1 0.336 0.264 0.246 0.298 0.383 0.324 0.282 0.291
ωn

RMS s−1 185.972 130.050 70.444 56.355 363.860 233.909 110.458 71.473
ωs

RMS s−1 31.139 25.859 26.080 31.293 38.669 27.906 25.370 24.955
PRMS kg cm−1 s−2 0.218 0.238 0.321 0.314 0.460 0.474 0.513 0.338

IV. RESULTS

We conduct a series of numerical simulations leading to statistically stationary finite-temperature
superfluid turbulence across four different temperatures T = 1.3 K, 1.5 K, 2.0 K, 2.15 K (from
ρs/ρ ≈ 96%–13%, respectively), using two models of the normal fluid flow: KS and the DNS
snapshot described above. We initialize the system with a few seed vortex rings and allow the
simulations to reach statistical steady states as measured by the total vortex line length |L|. In each
simulation, the strength of the normal fluid flow (drive) is adjusted to ensure that the final steady-
state configurations have comparable superfluid vortex line density of L = |L|/D3 ≈ 2 × 104 cm−2,
see Table I for specific details regarding simulation diagnostics. We purposely chose each simulation
to have equivalent mean intervortex spacing � = 1/

√
L cm in order to allow for a like-for-like

comparison across temperature and types of normal fluid drive. While this process ensures that
the superfluid Reynolds number Res = vs

RMSL0/κ [44] remains comparable between simulations it
does change the Reynolds number of the normal fluid component. All of our subsequent analysis
is performed within statistically steady-state regimes, including the computation of the superfluid
and normal fluid velocities and application of the coarse-grain procedure described above on a
128 × 128 × 128 uniform spatial grid. We have compared the presented results with those at
alternative times in steady-state conditions and observed no quantitative difference in statistics
(i.e., beyond standard errors). Therefore, we are confident that we are not reporting statistics from
extreme turbulent events in the simulations.

A. Polarized and random vortex line density

A first hint at the role of temperature in the correlations between the two fluid components motion
can be observed in Table I. We observe a negative temperature dependence of the normal fluid
root-mean-square (RMS) velocities due to the need to adjust the normal fluid drive with respect
to temperature in order to have comparable superfluid vortex line densities. What is particularly
interesting is that we do observe some fluctuations across the superfluid velocity and vorticity RMS
values with respect to temperature that appear uncorrelated to temperature for the DNS simulations
but negatively correlated in the case of the normal KS flow. Due to the similar total superfluid vortex
line densities, which is typically used as a proxy for superfluid kinetic energy, we would expect little
variation. However, we are likely observing natural temporal fluctuations in the flow statistics due to
our data being produced from spatial averages only at a fixed moment in time. With that being said,
the structure of the superfluid flow could have a significant impact on the observed statistics. Roche
and Barenghi [45] argued that L can be decomposed into a polarized field (carrying the majority of
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Temperature (K)
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L
×/

L
,

L
‖/

L

L‖/L, DNS

L×/L, DNS

L‖/L, KS

L×/L, KS

FIG. 1. Proportions of the polarized L‖ and random L× vortex line densities of our steady-state vortex
configurations across our simulations. In all cases, the polarized vortex line length is defined as those vortex
line elements with a local polarization larger than the RMS values of the 1.5 K DNS simulation.

the fluid kinetic energy), i.e., in the form of coherent structures such as vortex bundles [37], and an
isotropic randomly orientated field of vortex lines passively advected. Such a picture is common in
the literature of magneto-hydrodynamics, and in particular mean-field dynamo theory [46] where
more formally one can decompose the vortex line density L as

L = L‖ + L×, (8)

where L‖ denotes the polarized component and L× the randomly orientated component. In Fig. 1 we
plot the proportions of the polarized and random components of the vortex line density across our
simulations. We use the same algorithm as detailed in Ref. [37] to compute a local vorticity for each
vortex line segment on the superfluid vortex tangle by locally averaging the superfluid vorticity field
ωs at the discretization points using an M4 cubic spline kernel of finite support [47]. This approach
allows us to compute a local vorticity vector ωloc on the discretized superfluid vortex tangle (as
opposed to the uniform mesh in which ω̄s is defined). Specifically, we define the local vorticity at
each segment by

ωloc(si) = κ

N∑
j=1

s′
jW (ri j, h)�ξ j,

where ri j = |si − sj|, W (r, h) = g(r/h)/(πh3), and

g(q) =

⎧⎪⎨
⎪⎩

1 − 3
2 q2 + 3

4 q3 for 0 � q < 1,
1
4 (2 − q)3 for 1 � q < 2,

0 otherwise.

The radius of support of the kernel is chosen to be the mean intervortex spacing h = � to ensure suf-
ficient local averaging to capture polarization of the vorticity distribution from coherent structures.

Using the tangle averaged value of ωloc from the T = 1.5 K DNS simulation as the threshold
value for comparison across all simulations, the polarized vortex line segments are then classified
as those with values larger than this threshold value and are subsequently assigned to L‖. Segments
with local vorticity below the threshold are attributed to L×. This enables us to compare the relative
proportion of polarization defined by a fixed threshold value. We observe a clear temperature
dependence of the vortex line density polarization, with increasing local polarization with temper-
ature. Furthermore, the DNS simulations indicate enhanced polarization when compared across the
simulations of the KS normal flow. Indeed, this is to be expected; for higher temperatures, the mutual
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T = 1.3 K

T = 1.5 K

T = 2.0 K

T = 2.15 K

FIG. 2. Vorticity magnitude correlation rω versus filtering scale l f /L for the DNS (left) and KS (right)
simulations. The gray dashed vertical lines indicate the scale of the mean intervortex spacing �, which is
similar over all temperatures and normal fluid types.

friction between the two fluid components is stronger meaning that there is an increased coupling
between the two components, increased vorticity locking (see section below), with small-scale
fluctuations on the quantum vortex lines (Kelvin waves) more readily dissipated. Consequently,
at higher temperatures, the superfluid vortex tangle would be smoother and increasingly correlated
to the background large-scale normal fluid flow. In this respect, as studied in classical turbulence
[42], the uncorrelated and random phases of the KS flow will lead to reduced spatial coherence of
the resulting physical space velocity field and subsequently less extreme vortical structures when
compared to Navier-Stokes generated DNS (see Fig. 9 for a visual verification).

B. Vorticity locking

As just mentioned, for finite-temperature superfluids, the normal and superfluid components
are coupled through mutual friction, described by the force Fns in our model. The exact form
of this expression in the momentum equation is proportional to the difference between the two
fluid velocities, namely ∝ (vn − vs), specified by temperature-dependent coefficients α and α′,
acting close to regions of high superfluid vorticity. Hence, for nonzero temperatures, the mutual
friction force will act to bring the local velocity and vorticity fields back towards that of the
other component predominately in regions close to the center of the vortices, in essence locally
locking both components of the velocity and vorticity fields together. If both velocity fields are fully
locked then the mutual friction force vanishes. Following the approach of Morris et al. [22] we can
quantitatively measure vorticity locking by defining a vorticity correlation coefficient of the form

rω(l f ) = 〈ω̄sω̄n〉√〈
ω̄2

s

〉〈
ω̄2

n

〉 , (9)

using spatial averages between the coarse-grained superfluid and normal fluid vorticity fields. Here
ω̄i = |ω̄i| denotes the coarse-grained vorticity magnitude, coarse grained at a scale l f , for i = n, s
and 〈·〉 denoting a spatial average over the 3D domain. Our measurements of the vorticity correlation
across temperature and normal fluid form are presented in Fig. 2, and can be directly compared
to those of Ref. [22] who found rω ≈ 0.6 at T = 2.1 K at a filtering scale l f = �. Our correlation
coefficients for both normal fluid velocity fields are marginally larger, which could be a consequence
of a different coarse-graining procedure, or in the case of the DNS simulation, the fact that the
turbulence is frozen in time, which would plausibly inflate the value of rω due to the lack of temporal
motion. With that being said, we can draw the same insight as Morris et al. [22] and observe that
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FIG. 3. Vorticity correlations versus temperature measured with a coarse-grained scale of l f = 2�. Inset
shows the vorticity magnitude correlation rω, Eq. (9), while the main figure displays vorticity component
correlation rωi , Eq. (10).

at scales larger than the intervortex spacing, �, the normal and superfluid vorticity fields become
increasingly correlated.

We can go further and note that the correlation is highly dependent on temperature, due to
the enhanced mutual friction via the temperature-dependent coefficients. In particular, at lower
temperatures, around the filtering scale of the mean intervortex spacing l f ≈ �, the correlation
coefficient undergoes a sharp transition and drops off rapidly towards small filtering scales due
to the likely influence of Kelvin waves along the quantized vortex lines randomizing the superfluid
vorticity at such small scales. This provides further supportive evidence of our recent study on
coarse-grained statistics in superfluid turbulence [23], which demonstrated that a filtering scale
close to l f = 2� is the most appropriate length scale to produce a continuous superfluid vorticity
distribution from the discrete vortex filament model as this filters out the discreteness of the vortex
filaments while preserving the large-scale coherent structures (of more than two vortex lines and
above) and related velocity statistics.

We also examine the correlation of the individual components of the vorticity field, defined
through the correlation coefficients

rωi = 〈(êi · ω̄s)(êi · ω̄n)〉√
〈(êi · ω̄s)2〉〈(êi · ω̄n)2〉

, (10)

for i = z, y, z. In Fig. 3 we plot the directional vorticity component correlation coefficient rωi ,
i = x, y, z, at scale l f = 2�, which reveals a more complex picture. First, we observe no obvious
preference for direction, which should be the case as all our simulations are for homogeneous and
isotropic turbulence. Second, we see an almost linear temperature dependence of the component
correlations for both sets of simulation data. In fact, the DNS simulations lead to uniformly more
correlation across the temperature range probably due to the stationarity of the normal fluid flow.
Finally, we observe that the correlation between the two fluid components is less for each individual
spatial direction as opposed to the vorticity magnitudes (see insert of Fig. 3). This highlights that
there is more variability between the vorticity directions than in the actual vorticity magnitudes.
This is a reasonable observation when you consider that the turbulence is driven by either a fixed,
in magnitude and phase, normal flow (DNS) or a dynamic normal flow (KS) prescribed only by
deterministically varying phases in time, see Eq. (5).

While our results build on those of Ref. [22] and show a high degree of correlation between
the components, particularly at larger scales, to demonstrate true locking between the velocity
and vorticity fields we must go further. To do this we analyze the angle between the normal and
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FIG. 4. Probability density functions (PDFs) of the angle (left) and magnitude ratio (right) between the
coarse-grained velocity fields v̄n and v̄s with respect to temperature and normal fluid drive.

superfluid velocity and vorticity fields, defined through

θv
ns = arccos

(
v̄n · v̄s

v̄nv̄s

)
, θω

ns = arccos

(
ω̄n · ω̄s

ω̄nω̄s

)
, (11)

and the ratio of the magnitude of the two components, i.e., v̄n/v̄s, ω̄n/ω̄s. Figures 4 and 5 display
these statistics over the suite of simulations we performed. Both show a similar trend with the
PDFs of θv

ns and θω
ns becoming increasingly distributed around small angles (associated to positively

aligned vectors) with increasing temperature, while the vector magnitude ratio PDFs of v̄n/v̄s and
ω̄n/ω̄s become strongly peaked around unity. This is a clear indication of increased locking between
the two components as temperature increases. That this is more pronounced in the velocity field
is potentially a result of the mutual friction directly acting to minimize the difference between the
two velocity fields. Furthermore, even with the coarse graining, an artifact of the discrete nature of
the superfluid vorticity field is it becomes vanishingly small away from the axis of the quantized
vortices, which could reduce the correlation between the vorticity fields. These results, along with
the correlation coefficients presented earlier, point to a pronounced locking of the velocity and
vorticity fields as the temperature of the system increases.

To observe specific patterns in the vorticity correlation we plot scatter diagrams of a subsample
of the standardized vorticity fields in Fig. 6. We observe that the DNS data is more susceptible for
large vorticity extremes in both components probably related to the fact that the DNS normal fluid
flow contains more intense vortical structures when compared to the KS flow. This can be visually
ascertained from the enhanced polarization of vortex filaments in Fig. 9. Interestingly, the extremes
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FIG. 5. Probability density functions (PDFs) of the angle (left) and magnitude ratio (right) between the
coarse-grained vorticity fields ω̄n and ω̄s with respect to temperature and normal fluid drive.

054604-10



VORTICITY LOCKING AND PRESSURE DYNAMICS IN …

0 2 4 6 8

Standardized Normal Vorticity Magnitude

0

2

4

6

8

S
ta

n
d
ar

d
iz

ed
S
u
p
er

flu
id

V
or

ti
ci

ty
M

ag
n
it

u
d
e DNS(a)

T = 1.3 K

T = 1.5 K

T = 2.0 K

T = 2.15 K

0 2 4 6 8

Standardized Normal Vorticity Magnitude

0

2

4

6

8

S
ta

n
d
ar

d
iz

ed
S
u
p
er

flu
id

V
or

ti
ci

ty
M

ag
n
it

u
d
e KS(b)

T = 1.3 K

T = 1.5 K

T = 2.0 K

T = 2.15 K

FIG. 6. Scatter diagrams of the standardized normal vorticity against standardized superfluid vorticity
magnitude for both the (a) DNS and (b) KS simulations. Different colors and symbols indicate different
temperatures. The data is a representation of a sample of spatial data at a fixed time in statistical steady-state
conditions.

in vorticity for both normal and superfluid components do not appear to be particularly correlated
between each other with only a slight tendency observed in both the DNS and KS data. For the KS
flow, the variability is reduced and more locally centralized around the bulk normalized values. It
appears that lower temperatures result in increased variability of the vorticity values. To quantify this
spread, in Fig. 7 we plot the determinant of the 2 × 2 covariance matrix �. Here, the components of
the covariance matrix �i, j = Cov[Xi, Xj] for i, j = 1, 2 and X1 = ω̄n and X2 = ω̄s are the variances
and covariance of the normal and superfluid vorticity fields. We observe that computed values of
Det[�] do not appear temperature dependent with the values approximately constant across all
temperatures. (Large values of Det[�] would indicate strong variability of the data.) However, we
do observe increased variability of the vorticity fields normalized by their respective variances. This
is likely a consequence of the more significant coherent structures in the DNS flow leading to a
larger prevalence of extreme vorticity values in both vorticity fields.

To summarize, we observe clear locking of the velocity and vorticity fields that is enhanced
with temperature (via increased mutual friction), which is more prominent in the velocity fields.
The correlation occurs at scales larger than the intervortex spacing �, with rapid decoherence of
the two-fluid locking at scales below �. Moreover, we observe evidence that the locking is more
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FIG. 7. The determinant of the covariance matrix � of the normal and superfluid vorticity data versus
temperature. DNS data is plotted as red filled circles, with the KS data as blue filled squares.
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significant in the DNS data, which could be the result of the stronger local polarization but could
also be related do to the stationary normal fluid state we have used.

Having established the role temperature plays on the correlation of the vorticity fields, we now
progress to studying the dynamics of the pressure field. This is an important quantity due to the use
of pressure measurements in experiments to infer properties of the underlying velocity fields.

C. Pressure dynamics in two-fluid turbulence

In this section, we examine the turbulent signatures present in the two-fluid pressure field. From
here on in, our velocity and vorticity fields are filtered with the length scale l f = 2� with the
pressure computed thereafter. We first examine qualitatively the structure of the vortex tangle and the
resulting superfluid pressure fields. Figure 9 displays snapshots of the vortex tangle for both types of
normal fluid drive at the two extreme temperatures of T = 1.3 and 2.15 K in statistical steady-state
conditions. We note that the DNS tangle is more structured, with more defined large-scale superfluid
vortical structures (bundles) than in the KS tangle. This is mimicking the structures of the respective
normal fluid where phase correlations of modes defining the DNS normal fluid velocity field leads
to distinct large-scale coherent structures in the form of vorticity worms highlighted by the pressure
isosurface. In the case of the KS simulations, these phase correlations between Fourier modes are
absent and lead to less definitive structures even though the normal fluid energy spectrum remains
Kolmogorov k−5/3. We also note that temperature dependence leads to two independent phenomena.
First, the mean vortex line curvature is in general larger at lower temperatures due to the presence
of Kelvin waves [48], which become naturally suppressed at higher temperatures by the stronger
mutual friction. Second, and more importantly, we observe that in both lower temperature simula-
tions there is a visible increase in the vortex line density away from the highlighted low-pressure
regions (visualized as pressure isosurfaces at the −1σ -level of the standardized pressure statistics).
As alluded to earlier, the low-pressure regions are associated with the polarized component of the
vortex line density, L‖, see Eq. (8), whose fraction increases with temperature, and hence, we see a
picture consistent with the quantitative data presented in Fig. 1 that the level of polarization of the
tangle increases with temperature.

The role temperature plays in the pressure dynamics of two-fluid turbulence is most easily
understood from studying estimates [49] of the probability density functions (PDFs) of the pressure
and vorticity fields. Figure 10 shows normalized distributions of [Fig. 10(a)] the total pressure
field, alongside the separate contributions arising from [Fig. 10(b)] the normal and [Fig. 10(c)]
superfluid fluid components as defined in Eq. (4). Recall that the pressure field is dependent on
the ratio of fluid densities, hence at low temperatures we expect the pressure field to be dominated
by the superfluid contribution and vice versa at high temperatures. In both sets of simulations, we
observe deviations away from Gaussianity (pure Gaussian behavior is dictated by the black dashed
curve), at all temperatures, with a prevalence of introducing more extreme negative pressures. A
characterization also observed experimentally in Ref. [14]. As we would expect with an imposed
normal fluid, the temperature dependence in the pressure PDFs arises due to variation in the density
of the superfluid component. This is further enhanced at higher temperatures as the structure of the
vortex line tangle becomes increasingly locked and more polarized towards the intense vortical
regions of the normal fluid flow, more obvious in the DNS data, increasing the non-Gaussian
behavior. Consequently, our results suggest that as temperature increases the deviations from
Gaussianity become larger, a picture that is not inconsistent with Ref. [14]. The inserts of Fig. 10
show the computed skewness 〈((P − 〈P〉)/σP )3〉 of the pressure PDFs. Temperature dependence
of the skewness is not expected in the normal pressure contribution due to the one-way coupling
of our model, however, we do observe consistently more negative values in the DNS simulations
and a clear temperature dependence of the superfluid pressure contribution. This is mainly masked
in the overall pressure field due to the two-fluid density ratio leading to smaller contributions of
the superfluid component at high temperatures. To further quantify the degree of non-Gaussianity,
we compute the Kullback-Leibler (KL) divergence [50]: a measure of relative entropy (distance)
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FIG. 8. The Kullback-Leibler divergence between the normalized pressure field and the standardized
Gaussian distribution.

between two probability distributions. The KL divergence between two distributions Q1 and Q2 is
defined as

DKL(Q1||Q2) =
∫ ∞

−∞
Q1(x) ln

(
Q1(x)

Q2(x)

)
dx.

In Fig. 8, we plot the KL divergence of the measured normalized pressure distribution against
the standardized normal distribution. The KL divergence is a strictly positive quantity (unless the
two distributions are identical when it is zero) with an increasing value as the difference between the
distributions grows. We observe an increase of the KL divergence with respect to temperature that is
significantly more pronounced in the DNS simulations. Again, this reinforces our hypothesis that the
presence of more defined coherent structures is leading to increased non-Gaussianity of the pressure
and vorticity fields. This provides additional evidence to the conclusions of Ref. [14] where negative
pressure extremes were attributed to the presence of coherent structures in the superfluid flow. A
natural question arises whether this is connected to the observation of turbulence intermittency in
finite-temperature superfluids (observed deviations from Kolmogorov scalings in high-order veloc-
ity structure functions) that is still in debate as to the extent intermittency occurs [13]. As negative

(c)

(d)

(a)

T = 1.3 K

T = 2.15 K

KSDNS

(b)

FIG. 9. Physical space plots of the superfluid vortex filaments of the DNS at (a) T = 1.3 K, (b) T = 2.15 K
and KS at (c) T = 1.3 K, (d) T = 2.15 K with overlap of pressure isosurfaces at the −1σ -level of the
standardized pressure statistics. The negative pressure is situated around large sections of polarization of the
superfluid vortex lines.
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FIG. 10. (a) Normalized distribution of the fluid pressure P with additional plots of the specific contri-
butions arising from the (b) normal and (c) superfluid fluid components in log-linear coordinates. Colors
indicate different temperatures and the DNS and KS simulations, respectively. The black dashed curve
is of the standard Gaussian distribution. Inserts show the distribution skewness 〈((P − 〈P〉)/σP )3〉 versus
temperature.

pressure extremes are commonly used as a proxy to identify intense superfluid vorticity events, we
would expect to observe similar characteristics of the pressure PDFs in distributions of the superfluid
vorticity field. These are displayed in Fig. 11 and fully explain the temperature-dependent dynamics
of the pressure field described above. In particular, differences between the pressure fields in the
DNS and KS model simulations are due to marked differences in the normal fluid vorticity fields,
which the superfluid component locks to. In the case of the static DNS normal fluid data, the normal
fluid velocity statistics are identical across all temperatures (as they should due to the static flow only
being rescaled by a constant factor), indicated by all PDFs situated on top of one another. This is not
the case for the KS model where temporal differences are observed. As very pronounced vortical
structures are present in the DNS flow as opposed to the KS flow, these significantly drive the
corresponding superfluid flow away from pure Gaussian statistics. For the magnitude of a 3D vector,
Gaussian behavior in each component is represented by the Maxwell-Boltzmann distribution, which
the unstructured KS superfluid vorticity field more or less follows. Even without these structures in
the KS flow, we still observe small but significant deviations from Gaussianity in the superfluid
vorticity field (more pronounced at higher temperatures), suggesting that coherent superfluid vortex
bundles do not just arise through the presence of coherent structures in the normal fluid, but can arise
through the natural nonlinear interactions between the quantized vortices themselves. However, we
must conclude that the presence of such structures in the normal fluid significantly enhance this
effect, as seen in the DNS simulations. We observe a highly skewed superfluid vorticity distribution
with a long temperature-dependent tail. All evidence points to the coherent vortical structures
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FIG. 11. Normalized distribution of the (a) normal and (b) superfluid vorticity magnitudes. Colors indicate
different temperatures and the DNS and KS simulations, respectively. The black dashed curve is of the
standardized Maxwell-Boltzmann distribution that corresponds to Gaussian statistics of the field components.
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FIG. 12. Scatter diagrams of the standardized pressure against standardized normal vorticity magnitude for
both the (a) DNS and (b) KS simulations. Different colors and symbols indicate different temperatures. The
data is a representation of a sample of spatial data at a fixed time in statistical steady-state conditions.

driving the presence of extreme vorticity values and the deviation from Gaussian statistics of the
field that in turn generates localized regions of low pressure as seen in Figs. 9 and 10.

To complete the picture, Figs. 12 and 13 present scatter plots of values of the pressure field
against the normal and superfluid vorticity fields, respectively. We observe a significant negative
trend between the superfluid vorticity and pressure particularly for DNS, across all temperatures,
which agrees with what was reported in our previous study in Ref. [23] for zero-temperature
numerical data. Surprisingly this is less obvious in the case of KS flow, particularly for observing
any negative correlation of the pressure with respect to the superfluid vorticity magnitude. We argue
that this is likely due to the of lack large coherent structures within the normal fluid KS drive that
prevents the formation of strongly localized vortex bundles within the superfluid. This is supported
by Fig. 1 where the KS flow appears to generate more random orientated vortex lines that can be
visually observed from the vortex line tangle in Fig. 9. Moreover, we notice very little dependence
in the shape of the scatter-plot data with temperature, even though the vorticity and pressure PDFs
(see Figs. 10 and 11) indicate otherwise. What we can conclude is that the range over which the
correlation data is spread may not be temperature dependent, but its internal distribution may be so.
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FIG. 13. Scatter diagrams of the standardized pressure against standardized superfluid vorticity magnitude
for both the (a) DNS and (b) KS simulations. Different colors and symbols indicate different temperatures. The
data is a representation of a sample of spatial data at a fixed time in statistical steady-state conditions.
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FIG. 14. (Main) Compensated 1D pressure spectra k2Pk for the (a) DNS and (b) KS simulations. The
pressure spectra are compensated by the Kivotides et al. quantum pressure spectrum prediction of Pk ∝ k2

[51]. The classical Kolmogorov pressure spectrum of Pk ∝ k−7/3 is plotted by the light gray dashed line. In
all cases, the pressure spectra are computed from the non-coarse-grained velocity fields vn and vs. (Inserts)
Compensated 1D energy spectra of the superfluid (colored) and normal (black) velocity fields for each normal
flow type, respectively. Energy spectra are compensated by the classical Kolmogorov power-law scaling of
Ek ∝ k−5/3. All pressure and energy spectra are additionally shifted vertically to coincide at kmin.

This is likely a consequence of, or sensitivity to, the physical structure of the turbulence than the
relative ratios between the normal and superfluid components.

D. Pressure spectrum of superfluid turbulence

Kivotides et al. [51] argued that the 1D pressure spectrum Pk of superfluid turbulence [defined
in Eq. (12)] should scale as ∝ k−2 due to the localization of superfluid vorticity in quantized vortex
filaments, and thus there is a macroscopic quantum signature beyond the classical Kolmogorov
theory of turbulence (where the pressure spectrum is ∝ k−7/3). At high temperatures one would
expect the pressure field to be dominated by the normal fluid’s contribution leading to a k−7/3

pressure spectrum signature. However, at low temperatures, where the superfluid density dominates,
i.e., below temperatures of 1.5 K one may expect to see a transition to the k−2 scaling. Indeed, the
results of Ref. [51] were produced at T = 1.3 K, which indicated such behavior.

While experimentalists are pioneering a new generation of measurement probes, which may be
able to measure the flow at scales close to the intervortex spacing [52], scales below this remain
inaccessible. Thus, we investigate the 1D pressure spectrum Pk of the unfiltered velocity fields. We
define the 1D pressure spectrum Pk as the spectral distribution of the square integrated pressure:

∫ ∞

0
Pk dk = 1

D3

∫ (
P

ρ

)2

dx. (12)

We present the unfiltered 1D pressure and kinetic energy spectra in Fig. 14. We choose to
display the computed spectra from the non-coarse-grained fields due to the argument that the
quantum pressure signature is related to the discreteness of the superfluid vorticity field. The
main panels display the k2-compensated non-coarse-grained pressure field, with the insets showing
the 1D energy spectra Ek (defined through

∫ ∞
0 Ek dk = (1/D3)

∫
ρv2/2 dx) computed from the

non-coarse-grained velocity fields. Given the very small difference between the two power-law
scalings, and the noise present in our numerical data, it is hard to form a definitive opinion. However,
we believe there is some evidence that the pressure spectra in the KS simulations is consistent with
a k−2 scaling (within the range 102 cm−1 < k < 103 cm−1) across all temperatures considered. In
contrast, the DNS simulations are more consistent with the K41 scaling, k−7/3, again irrespective
of temperature. In performing this analysis, we also compared the pressure spectra produced from
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the filtered velocity fields (not presented). We were unable to distinguish between the two pressure
scalings and saw a lack of power-law behavior due to the effect of small-scale coarse-graining
process impacting the inertial range. The energy spectra insets show the clear k−5/3 scaling of the
normal fluid drive of both the DNS and KS simulations. For the superfluid velocity energy spectra,
this is not so clear, but there is evidence of a k−5/3-scaling in a small region around an intermediate
wave number of 103 cm−1. We suspect that the lack of a wide agreement is due to the statistical
averaging being taken over only one snapshot on a relatively small grid of 128 × 128 points and the
lack of temporal dynamics in the normal fluid drives preventing a true mixing of the superfluid flow.
Although not definitively conclusive, it may well be that the pressure spectrum can be used as an
indirect measure of the structure of the superfluid vortex tangle. For instance, when the superfluid
vortex tangle is relatively unstructured, i.e., when the unpolarized vortex line component dominates
L ≈ L×, one may expect a k−2 pressure spectrum signature of quantum turbulence to be observed.
This could be relevant to superfluid counterflow experiments [11], or those where ultraquantum
turbulence is generated through mechanical agitation or pulse charge injection [2]. However, if the
polarized component becomes appreciable then one can expect to observe the classical scaling. It
would be interesting to revisit these calculations in simulation (or experiments) within the T = 0 K
limit to test if the pressure spectrum can indeed be used as a tool to discriminate between the
ultraquantum and quasiclassical regimes.

As a final comment, the lack of any distinguishable power-law behavior in the pressure spectrum
computed using the coarse-grained velocity fields could be problematic for experimentalists as we
are frequently using the analogy that the filtering scale l f is a proxy for the size of an experimental
probe. Our results indicate the pressure spectrum of superfluid turbulence may be inaccessible
experimentally without probes capable of probing scales much smaller than the intervortex spacing.

V. DISCUSSION

The purpose of this study was to perform an in depth examination of finite-temperature superfluid
turbulence, using the VFM, in regard to the behavior between the externally excited normal fluid
and the resulting superfluid flow. We have observed that there is significant increase of vorticity
locking at higher temperatures leading to stronger correlations between the two fluid components.
This means that any normal fluid characteristics, such as non-Gaussianity of the flow field and the
presence of coherent vortical structures are more readily transferred to the superfluid component
at higher temperatures. Furthermore, as the KS flow is intrinsically Gaussian, we also show evi-
dence that deviations from Gaussianity can naturally manifest themselves directly in the superfluid
component, which again appears more prominent at higher temperatures. Signatures of which are
passed to the pressure field and can thus be detected from analysis of the pressure distribution.
However, we are unable to provide conclusive evidence that the measurement of the spatial pressure
spectrum can be used to distinguish between classical and quantum turbulent signature as proposed
in Ref. [51]. Instead, we suggest this spectra may be used to probe the underlying structure of the
turbulent tangle. With that being said, we are only performing simulations that encode a one-way
coupling from the normal to superfluid flow, and thus our results, especially at low temperatures,
neglect a significant normal fluid feedback from the dominant superfluid flow. Recent advances have
been made in this direction [35] with the development of a new high-performance two-way coupled
finite-temperature superfluid numerical code utilizing the VFM that in the future may be used to
verify our results presented here in more realistic scenarios.
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