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Collapse and the interplay between essentiality and impact in socioecological systems
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We study conditions leading to collapse on a nonequilibrium toy model introduced here for the interaction
dynamics between a social and an ecological system based on the concept of essentiality of services and goods.
One key difference from previous models is the separation between purely environmental collapse and that
caused by an imbalance in the population consumption of essential goods. By studying different regimes defined
by phenomenological parameters, we identify sustainable and unsustainable phases as well as the likelihood of
collapse. The behavior of the stochastic version of the model is analyzed with a combination of analytical and
computational techniques introduced here and shown to be consistent with key features of such processes in real
life.
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I. INTRODUCTION

After the publication of the landmark book by Meadows
et al. [1], much attention has been paid to the environmental
impact of human activities. In the following decades, the idea
of sustainable development became more influential and later
on originated what has been called sustainable development
goals [2].

Limiting the usage of natural resources might however be
in conflict with other national interests. In practice, nations
will prioritize strategic needs, such as sustained economic
growth, defense against internal and external threats, and in-
frastructure, over constraints on the use of natural resources,
especially if the latter are too restrictive. This situation can be
exemplified by the difficulties in enforcing worldwide agree-
ments, such as the Paris Agreement [3], and the slowness and
hesitancy in adopting sustainable technologies evidenced by
the failure in avoiding the current environmental crisis despite
decades of warnings. The necessary arrangements to meet
tight environmental goals in order to avoid ecological crisis
ultimately lead to discontentment of interest groups and even
social unrest when enforced without consent, as in the extreme
cases of food and water rationing during shortage times.

Conflicting interests between ecological impact and other
dimensions of sustainability have been addressed before by
mathematical models which, although different, bear elements
similar to our approach. For instance, the challenge to devise
viable strategies to regulate the use of decreasing fishing
stocks in the face of illegal overfishing due to economical
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interests has been addressed by means of differential equa-
tions by Eisenack et al. [4].

When the target resources comprise basic needs, such as
food and water, this situation is quite clear. It is important
to realize though that the necessary conditions leading to
social unrest vary with time, place, and culture. Repression
of democratic rights in many westernlike cultures would be
enough to cause social upheaval [5], even if this is not a need
whose deprivation would directly result in death. An extended
shortage of electrical power, which would not even exist two
centuries ago, might lead, among another things, to a high
social cost [6].

How the concept of essentiality, i.e., what exactly is con-
sidered to be an essential good in a certain context, is related
to the emergence of social collapse has been already discussed
in the social sciences literature, but it remains challenging to
mathematically model in a meaningful way [7,8].

The view that a fulfillment of needs and aspirations has to
be addressed to avoid social disruption has been expressed in
the so-called Brutland Report [9] by the World Commission
on Environment and Development and reiterated by Ostrom
[10]. More recently, other authors have addressed similar
questions by considering how economic value and economic
growth influence social collapse [11–13].

A first attempt at a simplified model was made in [14],
where the concept and word essentiality was first introduced
in this subject. The approach aimed to highlight conceptual
points rather than analyze the details of its dynamics. There
it was considered a certain society inserted into a wider en-
vironment from which resources are extracted to supply the
consumer needs of its individuals, a model that was named
SUEland.

SUE stands for superfluous and essential and the name
was intended to emphasize the idea that the agents compris-
ing the social system of SUE land represent individuals that
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make consumer choices which not only have an environmental
impact, but also contribute to the system’s social well-being
through the level of essentiality of the acquired products. In
other words, the model includes the often neglected (although
well-known) fact that people can choose to spend their money
on superfluous rather than essential goods in order to fulfill
aspirations not strictly required for biological survival.

Defining and measuring essentiality is a research line with
several subtleties. We leave a more focused discussion of that
subject to an upcoming work in a more appropriate outlet.
Here we assume that such a definition is possible in principle.
This allows us to attribute two dimensions to the sustainability
of goods and products—essentiality and impact—which, for
simplicity, we consider to assume only two discrete values
each. Such an approach reduces to four the sustainable classes
of goods comprising the possible buying choices of SUEland
citizens: (i) high impact and high essentiality (for which we
use the symbol ++), (ii) high impact and low essentiality
(+−), (iii) low impact and high essentiality (−+), and (iv)
low impact and low essentiality (−−). In [14] they were
called the Knight’s, Noble’s, Peasant’s, and Jester’s baskets,
respectively, for illustration purposes. They can be thought of
as a coarse graining of the product space by clustering goods
with close values of essentiality and impact.

It is worth stressing that selecting essentiality and impact as
the main attributes for sustainability, and furthermore taking
them as discrete, is a simplifying assumption used as an initial
step to facilitate the analytical treatment of the model as we
will see. A further step towards a more realistic modeling
would clearly be to use a continuous distribution of values.
Evidence of the shape of these distributions is being sought by
the authors, for instance, by surveys about essentiality percep-
tion among the population [8]. One can understand the chosen
discretization as a coarse graining by substituting the whole
distribution by typical or average values. We are currently
analyzing the effect of considering different distributions for
these values based on the data we are gathering.

Real-life societies are clearly inserted into and extract
resources from their surrounding environments in order to
function properly. SUEland is modeled along these same
lines. In the simplified model we introduce here, the amount
of extracted resources goes only into the manufacturing of the
products bought by citizens and already includes any possible
pollution or degradation due to the associated activities ren-
dering resources not usable.

The interaction between these two systems, the society
and the environment, forms what is called a socioecological
system (SES). We will follow the dynamics of measures of
impact and essentiality of the whole SES. These dynamics are
modeled by stochastic processes, reflecting the nondetermin-
istic character of buying choices. By combining simulations
with analytical approximations, we can identify sustainable
and unsustainable phases (according to definitions to be given
explicitly in the following) and associated features.

Environmental collapse is known to have been an impor-
tant factor in the fall of a number of civilizations [15] and
has been accordingly given a special status in the literature on
sustainability. Mathematical models on how the use of natural
resources affects the fate of societies, in particular based on
differential equations [16], have been proposed before. The

objective, rather than a perfect simulation of real scenarios
(which might even not be feasible), is to understand the main
reasons leading to collapse and the existence of some general
behavior. Our model differs from those in the way we take
into consideration the role of essentiality.

The main research question we try to answer is whether we
can further contribute to an increasing corpus of mathematical
theory on sustainability management [17] (see, in particular,
Chaps. 2 and 3 therein) by designing a toy model where the
trade-off between ecological impact and other dimensions of
sustainability, of which essentiality is chosen as a proxy, can
represent at least qualitatively the behavior of real systems
and provide both quantitative and qualitative insights into the
limits of such a kind of modeling. In the following, we show
that the answer is positive, albeit with limitations, many of
which we expect can be overcome by additional sophistication
of future models.

In Sec. II an overview of our nonequilibrium model is
given, its details being explained in the subsequent sections.
Section III introduces and analyzes the deterministic version
of the discrete map that is used to model the dynamics of
the renewable resources consumed by the society. This is a
minimal model designed to capture the essential properties of
the kind of renewable environment considered here, to which
noise will be added later on.

Section IV presents a detailed account of the SES dynamics
and how it is simulated. How the consumption process is
carried out in SUEland is explained here by defining precisely
the citizens’ buying choices and how they contribute to the
measures of impact and essentiality of the whole system. How
essentiality and social collapse are defined is mainly discussed
in Sec. V.

The simplest case is that in which there is no direct interac-
tion between essentiality and impact in a citizen’s decision on
what to buy. In other words, the citizen is free to choose any
combination of impact and essentiality when buying goods,
without the value of one influencing the probability of choos-
ing the other. The mathematical analysis of this case is made
in Sec. VI. In Sec. VII, simulations and numerical calcula-
tions are presented for that scenario, showing how the indirect
interaction between the two dimensions of sustainability can
push in opposite directions towards collapse. A discussion of
the model, our main conclusions, and future directions are
presented in Sec. VIII.

II. SOCIOECOLOGICAL SYSTEM

A SES can be analyzed by considering two interacting
subsystems: A society S and an environment E . The soci-
ety is always inserted in the environment, which renders the
difference between both functional rather than physical. This
can be represented by three concentric spheres, which we call
spheres of sustainability [14], representing three interacting
subsystems. The outermost one is the environment, the next
one is the society, and the innermost is its economy M.
For the sake of mathematical modeling, it is convenient to
consider the environment and society as formally separated
interacting systems. The economy will be represented by the
processes of wealth distribution and product consumption, but
any other consequences it might have in a real society will be
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here neglected. We will not be worried about how economic
resources are generated in this first approximation, assuming
that they are available as needed.

Societies are complex systems, with a range of different
processes running in parallel. Because we are mainly con-
cerned with the sustainability of natural resources consump-
tion, we will ignore them in the present study. Consumption
is modeled by citizens’ buying choices, which determine the
extraction of resources from the environment. These choices
result from a competition between the needs and aspirations of
each individual and external pressures, such as environmen-
tal awareness or governmental policies. The only impact of
the society on the environment in our analysis comes from
such consumption and the role of the environment is only
to provide a certain amount of available natural resources,
which can be either renewable (within certain limits) or not,
to manufacture products, satisfying society’s demand. The
agents we use in our agent-based simulation of SUEland’s
population represent individual citizens, but our results are
valid for cases where they are groups of people, companies,
or other institutions which contribute for the consumption of
natural resources.

The nonequilibrium dynamics of our model is comprised
of two different timescales. The macroscopic one determines
the evolution of the environment and the income distribution
among citizens, providing them with the necessary economic
resources for buying products. Within this scale, there is
a microscopic dynamics: Citizens buy products until their
economic resources are exhausted. Each decision is taken
stochastically, influenced by the factors we have already men-
tioned. By the end of each microscopic cycle, the product
demand of the society is calculated and a related amount
of resources necessary to produce the consumed goods is
extracted from the environment. If the amount of resources
required is higher than those available, we immediately stop
the dynamics and declare an environmental collapse.

III. RENEWABLE RESOURCES: A MINIMAL MODEL

Let us call R(t ) the amount of available environmental
resources at a certain time t in an arbitrary unit of mea-
surement (e.g., carbon footprint, metric tons, and liters). In
principle, like the society, the environment is a complex sys-
tem with R(t ) being a result of the interactions of its many
components. Because our main interest in this work is to
study how the society’s consumption affects the equilibrium
between essentiality and impact, we will not model all details
of the ecological system and concentrate only on this effect.
We therefore use a minimal model for the dynamics of the
resources given by a unidimensional discrete map

R(t + 1) = f (R(t )), (1)

where, at each macroscopic time step t , the environment
provides a certain amount of extractable resources R(t ) to
the society which is updated according to its consumption.
This macroscopic timescale would be roughly equivalent to an
actual month in the sense that this is the periodicity with which
economic updates are carried out. The resources necessary to
produce the goods consumed by the society in the previous

microscopic cycle generate the environmental impact I (t ) and
this quantity will be extracted from R(t ) at each update of E .

A popular choice for a minimal model would be the logistic
map. Its continuous version, the logistic equation, has been
used before to model the evolution of resources for different
systems [18,19] and is useful for the understanding of qualita-
tive aspects of sustainability of natural resources. However,
the usual logistic map does not have some properties we
would desire in our case. In order to represent environment
features that we think are important for our intended applica-
tion, we will choose the simplest map satisfying the following
criteria.

(i) There should be a maximum possible amount of re-
sources available for consumption Rmax, the environmental
limit, above which the resources cannot grow if they are
renewable. We use it to define the relative amount of available
resources r(t ) = R(t )/Rmax.

(ii) If the resources are not renewable, the update equa-
tion is simply a linear discount of the society’s amount
of consumption, i.e., r(t + 1) = r(t ) − η(t ), where η(t ) =
I (t )/Rmax is the relative impact.

(iii) If renewable, the resources should grow proportion-
ally to the current amount r(t ) − η(t ) whenever 0 < r(t ) −
η(t ) � 1. This is intended to model the fact that populations
would grow exponentially when they have enough resources
to reproduce freely.

(iv) The value r(t ) = 0 is a fixed point of the dynamics,
meaning that a depleted environment cannot recover.

(v) In particular, if η(t ) � r(t ) at any time, this should
imply r(t + 1) = 0.

We now show that the following map obeys all of the above
requirements:

r(t + 1) = �(r(t ) − η(t )){1 + α[1 − r(t ) + η(t )]}. (2)

Here 0 � α � 1 is the growth rate of the environmental re-
sources and �(x) is the ramp function, which is 0 if x < 0
and x otherwise, automatically guaranteeing that conditions
(iv) and (v) are satisfied.

Consider the case where η(t ) < r(t ). If α = 0, then r(t +
1) = r(t ) − η(t ), satisfying condition (ii). For α > 0, the map
can then be written as

r(t + 1) = [r(t ) − η(t )](1 + α) − α[r(t ) − η(t )]2. (3)

Because 0 � r(t ) − η(t ) � 1, the leading term of the ex-
pression above satisfies (iii), while the quadratic term is a
lesser-order perturbation.

It only remains to show that the model satisfies also con-
dition (i). In fact, if 0 � r(t ) � 1 then the two inequalities
0 � r(t + 1) � 1 can be simultaneously solved for α, giving

r(t + 1) � 0 ⇒ α � 1

r(t ) − η(t ) − 1
, (4)

r(t + 1) � 1 ⇒ α � 1

r(t ) − η(t )
. (5)

Because 0 < r(t ) − η(t ) � 1, its maximum value is attained
for r(t ) = 1 and η(t ) = 0, for which case r(t ) = 1 is a fixed
point for any α, as can be checked by plugging these values
into Eq. (2). The first bound is therefore always negative and
α � 0 guarantees it is satisfied. The second bound is always
greater than one and, as long as α � 1, it is also obeyed.
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Therefore, the map (2), with α ∈ [0, 1], satisfies all required
conditions.

The nonequilibrium steady states of the system, the equiv-
alent of its phases, are the fixed points of this map. We have
already found that r(t ) = 0 is always a fixed point and that
r(t ) = 1 is a fixed point when η(t ) = 0. To obtain a more
detailed characterization of the system, we will find its bifur-
cation diagram considering η ∈ [0, 1] as a (constant) tuning
parameter and drop its explicit dependence on t to simplify
the notation (if η > 1, then the system is automatically in
environmental collapse at the r = 0 fixed point). Later we
will introduce a stochastic dynamics for η and analyze how
it changes the current picture.

The stability analysis of one-dimensional maps is a stan-
dard procedure. We will give here only the results and direct
the reader to usual textbooks for the technical aspects [20,21].
Our system has the two fixed points

r∗
± = 1

2
+ η ± 1

2

√
1 − 4η

α
. (6)

For η = 0, we have r∗
+ = 1 and r∗

− = 0, the latter coinciding
with the collapse value, which is always fixed by design.
When 0 < η < α/4, the above solution leads to two nonzero
fixed points. The value of r∗

+ is always greater than 1
2 + η.

Notice also that the argument of the square root is always in
the interval [0,1], which means that the last term is less than
or equal to 1

2 , implying that r∗
− is also positive for η > 0. If

η = α/4, the two solutions collapse to the single value

r∗
0 = 1

2

(
1 + α

2

)
⇒ 1

2
� r∗

0 � 3

4
. (7)

It is easy to see that all solutions obey r∗
0 > η, which justifies

ignoring the step function.
The r = 0 fixed point exists for all values of η. It is easily

seen to be attractive for any η > 0, being only repulsive in the
particular case η = 0. For the other fixed points, we consider
the following two cases separately: 0 � η < α/4, in which the
dynamics will always move towards r∗

+ and away from r∗
−,

rendering the former an attractive fixed point and the latter
a repulsive one, and η = α/4, in which there is only one
nonzero fixed point in this case, which is attractive for values
above it and repulsive for values below it. In this latter case,
the system evolves towards r = 0 over time.

The full bifurcation diagram for the particular value α = 1,
used for illustration of the qualitative features of the map, is
presented in Fig. 1. For other nonzero values of α, it remains
qualitatively the same. The attractive fixed points are depicted
as solid lines, while the repulsive one is depicted as a dashed
line. The labels sustainable, unsustainable, and instantaneous
collapse indicate the asymptotic behavior if the map is ini-
tialized at points inside those regions. The sustainable region
(green) comprises the area encircled by the nonzero fixed
points and above them. It is characterized by an asymptotic
nonzero value of the natural resources. The rest of the diagram
(white and gray) is deemed unsustainable as the dynamics lead
invariably to the zero fixed point. The gray area highlighted
in the plot and labeled instantaneous collapse is the region
where, by design, the system instantly is considered to have
an environmental collapse.

FIG. 1. Bifurcation diagram. Thick solid black lines indicate at-
tractive (stable) fixed points for the natural resources r (r∗

+ and 0) and
the dashed black line the repulsive (unstable) one (r∗

−) for each value
of the relative impact η. The regions on the plot show the asymptotic
behavior if the dynamics is started in them. The value α = 1 is used.
The unsustainable region comprises both white and gray areas, the
immediate collapse being a subregion of it. The dashed red lines,
with the associated values for η and r, identify the point from where
the sustainable region ceases to exist.

We can now see that the map describes a system with a
threshold η∗

0 for the extraction of resources which equals only
one-fourth of the growth rate α. Above this, resources will be
eventually depleted. At and below this value, the fate of the
system depends on the initial amount of available resources.
Even though the system can still collapse, as long as η � η∗

0,
it is possible to have an attractive nonzero fixed point with
constant resources in the long term.

It is important to look at what happens for perturbations δη

of the value of the impact η. In this case, the stability of the
sustainable region against them will depend both on the size
of the perturbation and on the current value of r. At the line r∗

−
up to the point r∗

0 , including it, any perturbation δη > 0 will
throw the system into the unsustainable region, showing that
the sustainability of the system at the threshold values for the
impact is highly unstable to any increase of the latter. At the
line r∗

+, the system is more robust. As long as δη � η∗
0 − η,

the system remains sustainable.
It is worth recalling that the value of the threshold comes

from the simplified model above. The dynamics might change
for more realistic situations, but due to the constraints used to
build the equation, the existence of a threshold like this seems
to be a sensible conjecture.

Being a minimal model, the above dynamical equa-
tion can be further modified to accommodate the influence
of processes that might change consumption and renewal of
resources, which should then result in a change of the stability
diagram. For instance, higher efficiency of the resource can
be translated, in a first approximation, as a multiplicative

054201-4



COLLAPSE AND THE INTERPLAY BETWEEN … PHYSICAL REVIEW E 107, 054201 (2023)

constant in the interval (0,1) in front of the extracted re-
sources. This would appear both directly and as a factor on
the ratio between consumption and growth that appears in the
expression of the fixed points. Although we could generalize
the model in such a way that all these possibilities could be
included as additional parameters, we will keep the model
simple in this initial analysis.

IV. DYNAMICS OF THE SOCIETY

We now describe in more detail the dynamics of the society
which establishes the flow of money and extracted resources
in the model. At the beginning of each macroscopic time
step t , each citizen i of S receives a certain integer budget
bi � 0 according to a probability distribution representing S’s
income distribution and assumed to be known a priori. The
total population size (number of citizens) is N .

Consumption proceeds at the microscopic timescale,
whose discrete time steps we call τ . The citizens use their
budgets to buy products from each of the four possible baskets
according to predefined rules, which we leave unspecified for
now. The microscopic cycle ends once every citizen has spent
all their budget, at which point the next macroscopic step takes
place.

Pareto analyzed data from different countries and found
that the distribution of wealth could be approximated by a
power-law distribution, which today is known as the Pareto
distribution [22]. Due to the correlation between wealth and
income, the latter has also been associated with income dis-
tributions. Modern analysis of income distribution data for
several countries indicates that the population is separated in
two main classes [23,24]: An upper class comprising about
3% of the population which is well fitted by a Pareto dis-
tribution and a lower-middle class whose income follows
approximately a Boltzmann-Gibbs exponential distribution.
Banerjee and Yakovenko [24] proposed a distribution capable
of fitting both regimes

P (x) = e−λ arctan(x/x0 )

C[1 + (x/x0)2]1+γ
, (8)

where x0 is the crossover income between the two classes, λ

is a temperature parameter regulating the spread of the curve,
γ is a free adjustable parameter related to the exponent of the
limiting Pareto distribution, and C is the normalization con-
stant. This distribution is continuous with support on [0,∞].

Because we are working with integer values of the budget,
it is convenient to convert the above distribution to discrete
probabilities

W (b) = e−λ arctan(b/b0 )

ZW [1 + (b/b0)2]1+γ
, (9)

with b = bmin, bmin + 1, . . . , bmax and

ZW =
bmax∑

b=bmin

e−λ arctan(b/b0 )

[1 + (b/b0)2]1+γ
, (10)

where bmin and bmax are the floor and ceiling of wages, re-
spectively. Once budgets have been distributed, the buying
choices of the citizens are updated. We assume that each
product costs exactly one budget unit independently of its

characteristics. The update order should depend on whether
there is any influence between the choices of two different
citizens. This will not be the case here and therefore the update
order is irrelevant. The case of a network of influences is
certainly close to real-life situations, but its analysis requires
more careful consideration and will be left for future work. In
the current model, there is also no possibility of saving any
budget for the next round. It is probable that considering the
possibility of savings might change the overall behavior, but
like other possible variations of the model, it is beyond the
scope of the present work.

We represent the buying choice of citizen i for the μth
unit of its budget (i.e., μ = 1, 2, . . . , bi) by a two-dimensional
binary variable σ

μ
i = (ιμi , ε

μ
i ), ι

μ
i , ε

μ
i ∈ {±1}, where ι corre-

sponds to the impact and ε to the essentiality. The plus sign
means high and the minus sign means low for each of these
variables. In principle, there is no reason for the values of im-
pact and essentiality to have any direct dependence and can be
considered as free parameters of the model. External policies
and product availability can enforce some dependence, but
this will not be analyzed here. Therefore, we assume that each
item contributes with an environmental impact depending
only on iι and an essentiality eε. While we allow the impact to
assume any positive real value, for simplicity we take e+ = 1
and e− = 0, where 1 indicates an essential product and 0 a
superfluous one.

At the end of the macroscopic time step, we calculate the
total (absolute) impact I (t ) of the society as the sum of the
individual impacts Ii(t ) of each citizen i, which are given by

Ii(t ) =
bi∑

μ=1

(
1 + ι

μ
i

2
i+ + 1 − ι

μ
i

2
i−

)

=
bi∑

μ=1

(
ι
μ
i �− + �+

)
, (11)

with �± = (i+ ± i−)/2. This value will then be used to up-
date the environment’s amount of resources according to the
discrete map of Sec. III, which is used to evaluate whether the
system will suffer an environmental collapse. In the model we
are introducing, however, environmental collapse is not the
only form of collapse. A serious imbalance in the amount of
essential and superfluous consumption in the society will also
contribute to its demise. In order to keep track of a possible
social (as opposed to environmental) collapse, we also keep
track of the system’s essentiality E (t ) at each t by an expres-
sion analogous to the one used for the impact, but making the
exchange ι → ε. The rules by which this essentiality-based
social collapse can occur are discussed in the next section.

V. ESSENTIALITY, HUMAN NEEDS,
AND SOCIAL COLLAPSE

The psychologist Maslow proposed in a seminal paper [25]
a hierarchy of needs and aspirations that humans would strive
to fulfill in life, which became known as Maslow’s hierarchy
of needs. The proposed classification has been challenged
since then and showed to strongly depend on cultural as-
pects [26]. Still, that first approach can be considered as an
initial model that reflects a fundamental observation: When
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resources are limited, humans seem to favor using them to first
fulfill (biological) basic needs (hunger and safety) and only
then spend resources on aspirations (careers, entertainment,
and well-being).

This insight is what we use in our model, ignoring the
fine details of a realistic classification and simply assuming
that the probability of individuals buying either essential or
a superfluous products favors the former whenever they still
have basic needs to fulfill.

To be more specific, we assume that there exists a cer-
tain level of essentiality that we call Ê that corresponds to
the border between needs (essential products) and aspirations
(superfluous products). It is most probable that such a sharp
border is an idealization, but more studies are needed to un-
derstand it better, which we leave for extensions of the current
model.

The nature of the quantity Ê depends on the kind of society
in which the individual is inserted. In a democracy, one would
expect this to be a level which is perceived as consensual
within the society. For instance, although a particular wealthy
individual might assume that a car is an essential item, they
can agree that having a car might be ultimately a luxury in
a society with a high level of poverty. On the other hand, Ê
might be enforced by some kind of policy, an artificial yet
illustrative example being the fictional society of the novel
1984 [27], in which people are allowed to have only certain
kinds of items in controlled quantities. Anything above that
being considered not only superfluous, but illegal.

In fact, although we are using the words “needs” and “aspi-
rations” above, our model does not depend strongly on these
concepts, but rather on the characterization of essential and
superfluous products. In addition to the observation above,
what is superfluous also depends on culture, as mentioned in
the introductory section to this paper. Therefore, one prod-
uct can change from one category to another (e.g., electrical
power). The nature of the mathematical border Ê is another
issue, of which our binary separation is a simplification. A
more appropriate representation of such separation should
depend on a continuous essentiality index, which represents a
challenge to define and measure and which is currently under
study by the authors.

A simple choice for a quantity describing the cost for
choosing to buy a product with ε ∈ {±1} is then

HE = ε

2

[
E −

(
Ê − 1

2

)]
, (12)

where E is the citizen’s current level of satisfied essentiality
(or simply their level of essentiality, for short), the factor
1
2 was introduced for convenience, and the 1

2 subtracting Ê
creates a barrier halfway between Ê and Ê − 1 due to the fact
that individual essentiality levels change by integer units in the
current model. When external influences affecting the choice
of essentiality are not present, we take the probability of each
buying choice for a citizen to be of the Boltzmann-Gibbs form

P (ε) = 1

ZE
e−βHE , (13)

with the normalization constant ZE = 2 cosh[β(E − Ê +
1
2 )/2]. The parameter β regulates the rigidity with which an

FIG. 2. Probability P (ε = 1) for an individual to buy an essential
product given their current level E of essentiality. In the plot, Ê =
5 for different values of β. Notice how the greater its value is, the
sharper the barrier at Ê − 1/2 becomes, meaning that in the infinite
limit the individual will buy only essential products if E < Ê and
only superfluous products if E � Ê .

individual makes their choices. If β = 0, the boundary defined
by Ê is completely ignored by the individual when making a
decision about consumption. The greater the value of β is, the
more likely it is for the individual to favor a decision that will
bring them closer to Ê . Still, for any finite value of β, there
is a probability of making a superfluous choice even when
the minimum amount of essentiality is not satisfied; only in
the limit β → ∞ superfluous choices are strictly forbidden
if E < Ê . It should be clear that, in realistic situations, β is
hardly in this limit as humans do not fully abandon superflu-
ous choices even in the harshest conditions. Entertainment in
all forms, including harmful kinds like addictive drugs, can
even become dominant in certain scenarios. These consider-
ations connect the aspiration part of the hierarchy to matters
concerning mental health and similar topics, which are beyond
the aims of our present analysis.

The above expression allows us to write the probability of
buying an essential product (ε = 1) with the form

P (ε = 1) = 1

1 + eβ(E−Ê+1/2)
, (14)

known as a Fermi-Dirac distribution, where Ê plays the role of
what is called a chemical potential [28], evidencing the role of
β in smoothing the hard cutoff. Figure 2 illustrates the above
probability for different values of β.

We are finally in a position of characterizing the condi-
tions for an essentiality-based social collapse, which we will
assume to be caused by a lack of balance between needs and
aspirations of the society. Here we use a heuristic criterion for
triggering social collapse based on previous work [14]. Social
collapse is surely a complex subject, but we will constrain our
study to essentiality-based social collapse as is appropriate for
our model.

Consider the average value of the (fulfilled) essentiality
over the whole population at the end of the t th macroscopic
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time step of the society’s dynamics

Ē (t ) = E (t )

N
= 1

N

N∑
i=1

Ei(t ). (15)

If Ē � Ê , this means that the population either does not have
enough resources to fulfill their basic needs or is spending
all of its resources on superfluous products. Either way, bi-
ological survival is likely under stress. On the other hand, if
Ē � Ê , then only basic needs are being satisfied within that
society. As we have already mentioned, if we assume that
superfluous products include items which are important for
the psychological well-being of the population, we can argue
that the lack of them might increase social stress.

Based on these assumptions, we previously introduced the
essentiality balance B [14]. In its original version, it was
comprised of a band around Ê within which it assumed the
value B = 1, indicating the maximum allowed balance, and
would decrease linearly outside of it. According to that model,
a system would suffer from a social collapse whenever B = 0.
In order to introduce a more realistic probabilistic element,
we here define the essentiality balance as the probability of
avoiding social collapse given a certain value of Ē . Let us
call ωS ∈ {0, 1}, with probability B(ωS|Ē ), a binary random
variable that indicates social collapse when ωS = 1. Then
B(ωS = 0|Ē ) indicates the probability of avoiding social col-
lapse.

Like in the case of the natural resources map, we will use a
simple model that obeys the following heuristic requirements.

(i) The probability of avoiding collapse is zero when no
essential need is fulfilled, i.e., when Ē = 0. In this case, either
citizens do not have enough monetary resources to fulfill their
basic needs or they are spending too much on superfluous
products. In both cases, either by necessity or by choice, the
system might come close to a collapse due to biological stress.

(ii) Starting from Ē = 0, the probability of avoiding
collapse increases with Ē as basic needs are increasingly
fulfilled.

(iii) If too many resources are spent on essential needs, that
might mean that aspirations are not being fulfilled. Whatever
they are, that might lead to a breakdown of mental health,
leading to a social collapse triggered by social and psychologi-
cal stress. This means that the probability of avoiding collapse
should decrease after reaching its maximum value.

(iv) The maximum value is 1 and within a band around
Ē = Ê .

Straightforward calculations can show that the following
piecewise function, an example of which is given in Fig. 3,
satisfies all the above requirements:

B(ωS = 0|Ē ) =
⎧⎨
⎩

q−Ēe−βB (Ē−�− )2
for Ē � Ê − h

q+Ēe−βB (Ē−�+ )2
for Ē � Ê + h

1 otherwise.
(16)

Here Ē ∈ [0,∞), h is a real parameter which defines a sym-
metric band around Ê for which the probability is 1, βB is
a positive parameter that controls the decay of the proba-

FIG. 3. Probability of the system avoiding social collapse as
given in Eq. (16). In the plot, Ê = 50 with a band of size h = 10
for different values of βB.

bility outside that band, and the remaining parameters are
given by

q± = e1/4βB (Ê±h)2

Ê ± h
, (17)

�± = (Ê ± h) − 1

2βB(Ê ± h)
. (18)

In the same way as it is done for the environmental impact,
at each new macroscopic time step, the system is tested for
social collapse. While in the case of the impact there is a deter-
ministic threshold (maximum amount of available resources)
for the environmental collapse, social collapse will depend on
a probabilistic test set by the distribution B.

The notion of collapse we try to capture with the model
presented takes the real world as a key parameter. When the
system is at one of two extremes, i.e., 100% essential or 100%
superfluous, this should be seen as a sign of dysfunction, con-
stant stress, or inability to satisfy human aspirations beyond
the physiological needs. Maslow’s [25] and other studies of
human needs, such as Max-Neef’s Human Scale Development
[29], have inspired such an approach.

The reasoning is that, if a SES consumes only essential
goods, considerations like the above suggest a higher prob-
ability that it is under constant stress. It indicates a lack of
disposable income or resources to deal with crises or even just
sustain a moment of indulgence. In practice, a more complete
view of essentiality would consider each additional unit of
consumption of the same essential good as having its marginal
essentiality decreased when the system’s needs have been par-
tially fulfilled. For instance, the biological need for drinking
water is around 2 L per day. Below such a threshold, the
drinking water can be considered effectively essential. Still,
each additional cup might decrease its essentiality. Above the
threshold, units might be considered not essential anymore,
being indulgent even if somewhat beneficial. In any case, they
are not harmful or represent any dysfunction, although they
may have essentiality and might be different or decreasing
depending on when consumption happens. Above a certain
limit though, consumption would address no actual need in
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the system. This is when it can be classified as superfluous
and, even for drinking water, could be harmful.

VI. DECOUPLED DYNAMICS AND COLLAPSE

From here on, we assume that each citizen takes their con-
sumption decisions without direct influence from the others.
This will allow us to use the central-limit theorem (CLT)
over the distributions of impact and essentiality to obtain
a simplified effective dynamics. The case where peers can
influence a citizen’s decision is a common and important
situation, but involves additional considerations and will be
developed elsewhere. Indirect influence can come from gov-
ernmental policies or cultural behaviors based on current
levels of relevant variables, but this can be modeled as a
constant local field and will not add any extra sophistication
to the analysis.

How well this independence assumption reflects reality
depends on the scenario being analyzed with the model. For
instance, it can be used to simulate a temporary scenario in
which information is prevented from flowing between agents
or as a baseline to compare the effect of interactions. Inter-
actions might be important in some situations and we are
currently working on an extension of the model where people
are considered as nodes on a social network and peer influ-
ence will affect choices of both impact and essentiality. That,
however, adds additional levels of sophistication to the model
that makes both the analytics and simulations more involved
and will be left to be addressed in future works.

When such local fields are nonexistent, this means that
citizens completely ignore the consequences of their choices
on other citizens. This selfish behavior is well known in social
sciences and leads to the famous tragedy of the commons
[30], which describes the situation where the free sharing of
a resource ends up exhausting it and causing its collapse due
to individuals disregarding the needs of the others. For such
a case, we can analyze separately the dynamics of the impact
and of the essentiality. This is the scenario assumed in what
follows.

The choice on the impact of the product to be bought can
then be assumed to have a probability distribution

P (ιi ) = pδ(ιi,+1) + (1 − p)δ(ιi,−1), (19)

where δ(·, ·) is a Kronecker delta. In other words, there is a
probability p that a citizen will buy a high impact product and
1 − p of a low impact one. Because impact choices and bi

are independent random variables, the mean and variance of
the individual impacts Ii(t ) defined by Eq. (11) are calculated
straightforwardly as

m ≡ 〈Ii(t )〉 = [(2p − 1)�− + �+]mb, (20)

σ 2 ≡ 〈
I2
i (t )

〉 − 〈
Ii(t )

〉2

= [(2p − 1)�− + �+]2σ 2
b + 4p(1 − p)�2

− mb, (21)

with mb and σ 2
b the mean and variance of the variables bi,

respectively. These quantities are the same for all citizens as
the model considers that the Ii are independent and identically
distributed random variables. Therefore, as the number of cit-
izens N increases, the CLT guarantees that the relative impact
η = (1/Rmax)

∑
i Ii can be approximated with increasing pre-

cision by a Gaussian-distributed random variable with mean
mη = Nm/Rmax and variance σ 2

η = Nσ 2/R2
max. Each initial

value of the resources will then result in a distribution of final
values. This distribution can be obtained by simple population
dynamics, where we define an initial population of values for
r and update them for a number of time steps. Given a certain
distribution of initial values, one can then obtain a probability
distribution of final values after a certain number of time steps.

Consider now the threshold relative impact η∗
0. Even if

mη < η∗
0, the probability that, at any time step, η � η∗

0 is given
by

P (η � η∗
0 ) = 1

2
erfc

⎛
⎜⎝mη − η∗

0√
2σ 2

η

⎞
⎟⎠, (22)

which, for large N , behaves like

P (η � η∗
0 ) ∝ N−1/2e−Nm/2σ 2

, (23)

i.e., it decreases exponentially with the population size. There-
fore, the longer the system remains in the unsustainable region
(also, the farthest it is from η∗

0), the larger the chances are of
an environmental collapse. A large enough variance can even
take the system straight to the immediate collapse region.

Because essentiality is decoupled from impact under the
above assumptions, we can analyze its dynamics separately.
Each citizen i receives bi units to spend at the beginning
of the month and buy bi different products according to the
probability given by Eq. (13). As stated before, buying will
proceed until each citizen has spent all its units. When the
choices are independent (i.e., citizens do not influence one
another), one can ignore the collective microscopic time and
consider the evolution of the essentiality of each citizen in an
effective “proper time” θ = 0, . . . , bi, where each tick of the
clock corresponds to a unit spent by the citizen. Therefore, at
effective microscopic time step θ , the essentiality of the ith
citizen is

Ei(θ ) =
{

E0, θ = 0∑θ
μ=1

1+ε
μ
i

2 , θ � 1.
(24)

The dynamics of Ei is that of a first-order Markov chain.
For the specific binary values of essentiality we are using,
we have that Ei(θ ) � bi. The transition probability from state
Ei = k to state Ei = l , k, l = 0, . . . , bi, is then

T (i)
lk ≡ P (Ei(θ ) = l|Ei(θ − 1) = k)

= δkl

1 + e−β(k−Ê+1/2)
+ δk+1,l

1 + eβ(k−Ê+1/2)
, (25)

according to Eq. (13). This leads to the (bi + 1) × (bi + 1)
transition matrix for the chain

T (i) =

⎛
⎜⎜⎜⎜⎝

p0 0 0 · · · 0 0
1 − p0 p1 0 · · · 0 0

0 1 − p1 p2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 0 1 − pbi−1 pbi

⎞
⎟⎟⎟⎟⎠,

(26)
with

pn = 1

1 + e−β(n−Ê+1/2)
, n < bi, (27)
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FIG. 4. Results of simulation (open circles) and the corresponding approximations (lines) of the SUE model with parameters given in
Table I and (a) bmax = 4 and (b) bmax = 15.

and pbi = 1. Because T (i) is lower triangular, its eigenvalues
are trivially λμ = pμ, μ = 0, . . . , bi.

The probability of collapse at that specific time step is then

P (ωS = 1) =
∫

dĒ B(ωS = 1|Ē )P (Ē )

= 1 −
∫

dĒ B(ωS = 0|Ē )P (Ē ), (28)

and we need to calculate the probability distribution for Ē ,
which is the (scaled) convolution of the individual distribu-
tions of essentialities at the end of the microscopic cycle.
Dropping the i indices for convenience, they are themselves

P (E (θ = b)) =
∑

b

P (E (θ = b)|b)P (b), (29)

which means that they are all the same for every citizen.
Therefore, P (Ē ) can, in the limit of large N , be approximated
by a Gaussian with the mean and variance equal to those of
the individual essentialities. Let us define the vector π (θ ) by
its components as

π (θ )n = P (E (θ ) = n) = [T θπ (0)]n, (30)

with π (0)n = δnE0 , where E0 is an initial value of the essen-
tiality which we assume to be the same for all citizens. For

θ � 1, we have

P (E (θ ) = l )

=
∑

k

P (E (θ ) = l|E (θ − 1) = k)P (E (θ − 1) = k),

(31)

and we always start the process with E (0) = E0. Any re-
quired averages, including the mean and variance, can then be
obtained from the kth raw moments

〈
Ek

f

〉 =
bmax∑

b=bmin

b∑
n=0

nkT b
nE0

P (b), (32)

where E f means the final value of the essentiality at the end of
the microscopic cycle. In particular, let us define mE = 〈E f 〉
and σ 2

E = 〈E2
f 〉 − m2

E . These moments can be calculated nu-
merically, with the most costly steps being the matrix powers
T b. This can be further developed analytically in terms of the
left and right eigenvectors of T , which are explicitly given for
the sake of completion in the Appendix. However, the entries
of these eigenvectors will require recurrent expressions which
will also need to be calculated numerically in practice, which
does not seem to lead to significant improvements in terms of
computational time.

In general, unless the distribution of E f is pathological in
some way, the CLT can be once again invoked to claim that
the distribution of Ē can be well approximated by a Gaussian
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TABLE I. Set of values used in the simulation.

Variable Value Variable Value

Rmax 500 λ 1.0
N 100 b0 50
α 1.0 γ 0
i+ 1.0 Ê 4
i− 0.5 β 50
p 0.6 βB 0.5
E0 0 h 0.7
bmin 0

with mean mE and variance σ 2
E/N for large N . This allow us

to find an analytical, albeit complicated, expression for the
distribution for social collapse from Eq. (28), which we will
not show here as it is straightforward to obtain.

We can combine both probabilities of collapse and, when
essentiality and impact do not have any direct coupling, write
the probability distribution for avoiding either collapse until
time step T as

P (ωE = 0, ωS = 0|T ) = P (ωS = 0|T )

×
∫

dr0P (ωE = 0|T, r0)P (r0),

(33)

where r0 represents the initial value of the available resources.
The first is given by P (ωS = 0|T ) = P (ωS = 0)T as the prob-
ability of collapse does not depend on the specific time step.
The second term can be calculated by population dynamics
by measuring the fraction of collapsed systems on a certain
population.

VII. INTERPLAY

Even without a direct interaction term between the de-
cisions of consuming items according to essentiality and
impact, there is an indirect interplay which is controlled
by the average value of the wealth distribution. In the sce-
nario presented here, citizens spend their whole budget at
every macroscopic time step. Therefore, the larger the average
wealth, the greater the environmental impact which, depend-
ing on the combination of the other parameters, can lead to
an environmental collapse. With all other related parameters
remaining the same, the solution would then be to keep the
average wealth within levels that guarantee the environment
enough room to renew at each iteration. On the other hand,
by decreasing too much the average wealth, one can prevent
citizens from fulfilling their basic needs, which might lead to
a social collapse.

The situation described above is illustrated in Fig. 4, where
the parameters of the model are all set to the same values given
in Table I except for bmax. By changing bmax, we can change
the value of the average wealth.

Figure 4(a) shows the results for bmax = 4 and Fig. 4(b)
for bmax = 15, which lead to average wealth values of ap-
proximately mb = 1.957 and 6.968, respectively. In the first
case, the system reaches quickly an environmental steady state
below collapse, but social collapse eventually takes place. The
second case shows the opposite behavior; we observe a quick

FIG. 5. Results of simulation of social collapse for approxi-
mately the same average b (mb ≈ 7) for different variances given next
to the corresponding curve.

environmental collapse, but the probability of social collapse,
although increasing, does that at a very slow pace.

Figure 5 shows simulations for the probability of social
collapse for values of mb ≈ 7 and different variances which
are shown next to the corresponding curve. Most parameter
values used for each case are the same as in Table I, except
for the four parameters bmax, b0, γ , and λ. The values used are
11, 7735, 1, and −1000 for σ 2

b ≈ 10.6; 15, 50, 0, and 1 for
σ 2

b ≈ 21.0; and 30, 11.4, 0, and 1 for σ 2
b ≈ 47.1.

The increasing variance might be understood as an in-
creasing amount of inequality in the wealth distribution. The
value of mb is greater than the minimum acceptable value of
essentiality, but as the inequality increases, there is a greater
chance that many people will not be able the stay in the
allowed essentiality band and that will increase the chances
of social collapse.

Another interesting question is what happens if one allows
some tolerance to higher values of the essentiality against
social collapse. Figure 6 shows the results of simulations
where we modify the probability of buying essential products
by making β = 0, meaning that an individual will choose
randomly between an essential and a superfluous product to
buy. We then use an asymmetric interval around Ê in the
probability of avoiding collapse and observe the effect of
increasing the right-hand size of it.

FIG. 6. Results of simulation of social collapse for different tol-
erances against collapse for high essentiality. The numbers close to
the curve are the lengths of the right-hand-side intervals.
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The plot shows how the probability of social collapse
quickly decreases as the tolerance interval becomes wider.
This is the case for the combination of parameters we used
because the choice of parameter for the probability of buy-
ing an essential product guarantees that citizens will still by
essential products even if their essentiality is fulfilled. That
effect would not be seen in our previous simulations as we
are assuming that, whenever the essentiality is fulfilled, the
citizen starts to buy only superfluous products.

The simulations show that the model can capture well the
intuitive behavior expected from the model. We also can see
from the plots that the approximations we have derived are in
good agreement with the actual results, even for population
values which are not very large.

What combination of possible parameters reflects better
real situations is an important aspect which has implications
on the stability of the model dynamics. The model devel-
oped here needs to be compared to data collected from real
situations and analyzed in order to evaluate the plausibility
of its parameter space. The task involves research and data
from different areas. Without a thorough consideration of the
actual meaning of these numerical values in real situations,
one might indeed risk carrying out an analysis that might miss
relevant points and focus on potentially irrelevant parameter
subspaces and studies in this direction are currently being
carried out by the authors.

VIII. DISCUSSION

The model, as it was introduced and analyzed in this work,
is clearly a toy model even though, by formalizing mathe-
matically the concepts introduced by it, it allows an initial
insight into the dynamics of the existing opposing forces when
trying to prevent a serious loss of environmental resources
under the constraint of fulfilling social needs of a population.
Our intention was to lay down the basic blocks on a frame-
work to describe and analyze mathematically the interplay
between environmental impact and social health, here mea-
sured as a function of the proposed essentiality measure, of
a socioecological system. It is true that real-life agents can
have consumption behaviors which will in general be much
more complex than the one considered in this work. The con-
sequences of such behaviors, which might change the results
of this paper, indeed cannot be captured by our analysis. How-
ever, as the model variables have clear interpretations, they
not only provide insights into the behavior of such systems,
but also clarify avenues for improvement of the model.

There are, in addition, several possibilities that were not
considered here.

(i) Credit. If citizens are allowed to borrow money or buy
goods for paying at a later time, this would change the limits
on the amount of goods that can be bought and one would
expect that to drive the system deeper into the unsustainable
region. Such a situation would depend on rules of credit,
such as the total amount that can be borrowed, conditions of
repayment, and deadlines.

(ii) Savings. The possibility of saving money at a certain
time to spend that amount later can introduce an extra source
of unpredictability in the model. If such actions are random,
their effect might average out in the long term, but if they are
coordinated (or driven by external factors), they might create

sudden bursts on a system that is otherwise believed to be in a
sustainable situation.

(iii) Price distributions. Instead of considering all products
to have the same price, a more realistic situation would be
to include a price distribution. For large populations, one
would expect that the behavior of the system would then be
dependent on general statistical features of the distribution,
like whether it is uni- or multimodal, has a large tail, or has
nonconverging moments.

(iv) Interactions. Considering citizens as agents of social
networks with possibly complex structures and taking into
consideration influences of peers in their consumption choices
can result in a more diverse behavior of the model. Some sim-
ilarity of our model to the Ashkin-Teller model [31] hints at a
complex phase diagram with possible topological transitions.
Such influences have been recently suggested and analyzed in
models of opinion dynamics [32] and are a possible avenue
for future exploration in our model.

Although all these modifications could bring the model
closer to real situations, our objective was to explore the
most fundamental aspects and construct a first framework to
which these modifications can be added later on and analyzed
properly.

The simulations presented show that the model can capture
expected aspects of the system’s behavior and that the
techniques developed here for analysis, especially the derived
approximations, are efficient tools of study. Some parameters
and variables we chose for our model are clearly difficult
to measure in real settings, for instance, the essentiality of
products.

Several elements of the model presented here are
currently being used by the authors in the formulation
and implementation of environmental strategies. Running
different scenarios with this model has proven, in practice,
to improve reflection on the impact of strategic decisions on
sustainability performance and reduced risk of greenwashing,
among other benefits. Moreover, its explanatory power
contributes to the understanding of the behavior of SESs
going through transitions and/or perturbations, providing
insights about future model improvements. For instance, the
model provides a stronger viewpoint to explain the ban on
production and imports of ozone-depleting refrigerants rather
than the fridges themselves. China’s increase in export tariffs
when there is a shortage of energy to produce essential goods
for the domestic market also gains a clearer understanding
through the lenses of our model.

Earth is a nonequilibrium dynamical system, of which
the societies are an inseparable part. In order to survive,
they need to constantly reassess priorities and adapt their
strategies in key economic sectors taking into consideration
the value of their natural resources. At moments of crisis, such
assessments imbue a sense of urgency and/or contribute to
quicker changes. One of the main challenges in implementing
urgent policies, especially when they constrain both economic
activities or the normal pace of life, is to decide which
activities are essential or not. We have seen first hand
(e.g., during the COVID-19 pandemic) that such restrictive
measures lead to the discontentment of macroscopic fractions
of the society, and policy needs to balance on a fine line
between avoiding greater losses and attaining the minimum
necessary level of compliance. In any given crisis, be it
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political, economic, social, or ecological, SESs need to
address what their essential activities are [33,34]. Even
nowadays, only a small number of companies, for instance,
assess the essentiality of their products, a scenario that our
model could help change as it connects essentiality and
impact to the possibility of devising more robust responses
to crisis for any SES, keeping the system’s resilience in both
ecological and socioeconomical dimensions.

One question that might arise from our analysis is whether
collapse is unavoidable given the results of our simulations.
Whether or not collapse happens depends on how the dynam-
ics of the system develops on the stability diagram of Fig. 1,
which will be defined by the attraction basins of the fixed
points. Here there is a subtle point. Once the system enters
the unsustainable phase, collapse cannot be avoided unless
the parameters defining the stability diagram change. If they
do, then the phases can be readjusted and the system might
be driven back to stability. This is good news, as collapse
could be avoided by changes in consumption patterns or in
the renewable rate of the system. Such a control scenario is
not addressed here, but the authors have been considering
such strategies. In our model, it is defined ad hoc that once
all resources are used, the system immediately collapses, but
in reality the collapse, even if initially unavoidable, will take
a finite time to happen and such a delay might be used to
divert resources in an attempt to reverse the situation. Once
more, this would be an additional modification that we leave
to explore in extensions of the current work.

There is a connection between our ideas, in particular the
concept of collapse, and those developed in viability theory
[35]. Roughly speaking, a viable system has the ability to
persist and maintain its function over time in a certain en-
vironment. If one considers that a nonviable system is one
that is unable to sustain itself and is at risk of collapsing,
indeed the simplified model presented by us would imply a
general nonviability of such systems. In our model, a lack of
exact balance between essential and superfluous consumption
will lead to that, as excessive consumption leads to resource
depletion and environmental degradation, which immediately
implies the system’s inability to sustain itself. However, the
analysis presented here also points to what features of the
model lead to that, providing indications of how it can be
modified to allow the viability of the system.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
thorough and relevant suggestions, which not only greatly
contributed to improving this paper but also conveyed new
insights which should lead to interesting future developments
of the present work.

APPENDIX: EIGENVECTORS OF THE ESSENTIALITY
MARKOV CHAIN

In order to find the first two moments of the Markov chain
from Sec. VI, we need to calculate the bth power of the
transition matrix, which can be done by using the expression

T b =
b∑

μ=0

(cμ)−1(λμ)bAμ, (A1)

where the matrices Aμ form the spectral set of T and are
given by

Aμ = uμvμ, (A2)

where uμ and vμ are the right and left eigenvectors of T for
the eigenvalue λμ, respectively. The equation for the right
eigenvalues reads Tuμ = λμuμ and from this we have

p0uμ
0 =λμuμ

0 , (1 − pn)uμ
n + pn+1uμ

n+1 = λμuμ
n+1, n � 0.

(A3)
The second relation implies

uμ
n =

(
λμ − pn+1

1 − pn

)
uμ

n+1. (A4)

Because the eigenvalues are λμ = pμ, we have

uμ
n = 0, n < μ, (A5)

uμ
n =

⎛
⎝ b∏

m=n+1

λμ − pm

1 − pm−1

⎞
⎠uμ

b (A6)

and we are free to adjust the scale. There is a similar equa-
tion for the left eigenvalues vT = λv which gives

pbv
μ

b = λμv
μ

b , pnv
μ
n + (1 − pn)vμ

n+1 = λμvμ
n , n < b,

(A7)
leading to

vμ
n =

(
1 − pn

λμ − pn

)
v

μ
n+1 (A8)

and

vμ
n = 0, n > μ, (A9)

vμ
n =

⎛
⎝μ−1∏

m=n

1 − pm

λμ − pm

⎞
⎠vμ

μ, (A10)

and we are free to adjust the scale again.
It becomes convenient to normalize the eigenvectors in

such a way that cμ = vμuμ = 1. Given the constraints in the
definitions of their coordinates, it is clear that vμuμ = vμ

μuμ
μ.

We can then choose the normalizations of the eigenvectors
such that vμ

μ = uμ
μ = 1. The last equality can be achieved by

choosing

uμ

b =
b∏

m=μ+1

1 − pm−1

pμ − pm
. (A11)

Let us define the indicator function

χ (A) =
{

1 if A is true
0 if A is false. (A12)

Then we can write the eigenvectors as

uμ
n = χ (n > μ)

⎛
⎝ n∏

m=μ+1

1 − pm−1

pμ − pm

⎞
⎠, (A13)

vμ
n = χ (n < μ)

⎛
⎝μ−1∏

m=n

1 − pm

pμ − pm

⎞
⎠, (A14)

uμ
μ = vμ

μ = 1. (A15)
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