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Abstract. The robust and reliable prediction of urban traffic provides
a pathway to reducing pollution, increasing road safety and minimising
infrastructure costs. The data driven modelling of vehicle flow through
major cities is an inherently complex task, given the intricate topology
of real life road networks, the dynamic nature of urban traffic, often
disrupted by construction work and large-scale social events, and the
various failures of sensing equipment, leading to discontinuous and noisy
readings. It thus becomes necessary to look beyond traditional optimi-
sation approaches and consider evolutionary methods, such as Genetic
Programming (GP). We investigate the quality of GP traffic models,
under both normal and anomalous conditions (such as major sporting
events), at two levels: spatial, where we enhance standard GP with Trans-
fer Learning (TL) and diversity control in order to learn traffic patterns
from areas neighbouring the one where a prediction is needed, and tem-
poral. In the latter case, we propose two implementations of GP with
TL: one that employs a lag operator to skip over a configurable num-
ber of anomalous traffic readings during training and one that leverages
Vectorial GP, particularly its linear algebra operators, to smooth out the
effect of anomalous data samples on model prediction quality. A thor-
ough experimental investigation conducted on central Birmingham traf-
fic readings collected before and during the 2022 Commonwealth Games
demonstrates our models’ usefulness in a variety of real-life scenarios.

Keywords: Nature-inspired computing for sustainability · Resilient ur-
ban development · AI-driven decision support systems · Intelligent and
safe transportation · Urban traffic prediction.

1 Introduction

Designing, building and maintaining an accessible, safe and cost-effective urban
traffic infrastructure are key milestones on the road to meeting the UN’s Sustain-
able Development goals1. The complex decision making involved, particularly at
⋆ This work is supported by the Engineering and Physical Sciences Research Council

(Grant Number EP/R512989/1).
1 Available at https://sdgs.un.org/goals, in particular, goal 11, action 11.2.
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the level of local administration, can be significantly streamlined when robust
and reliable predictions of future traffic through key areas of the urban road
network are made available by computational means rather than by exclusively
relying on human expertise.

To that end, data-driven, Artificial Intelligence methods are widely recog-
nised ways of producing computationally efficient models of dynamic, large-scale
transport networks, such as modern day cities [3]. Within that category, evolu-
tionary optimisation techniques, Genetic Programming (GP) in particular, offer
an attractive solution to the urban traffic and modelling prediction problem.
When combined with Transfer Learning (TL), traditional GP has been shown to
predict vehicle flow with competitive accuracy, through urban junctions where
traffic readings are either unavailable or unreliable [7, 12]. Transferring traffic
patterns learnt on areas that are topologically similar to, yet geographically dis-
tinct from, the region where a traffic model is needed but difficult or impossible
to obtain practically is particularly important when vehicle flow is affected by
atypical events (accidents, major sporting events, construction work, etc.). Be-
sides accurately capturing vehicle flow under typical and atypical conditions by
spatial means, as afforded by TL, traffic anomalies can also be mitigated on a
temporal level. One way of achieving that is by equipping TL-enhanced predic-
tion algorithms with a lag operator, making it possible to train traffic models on
a dynamically adjusted number of past readings, counting backwards from an
arbitrarily chosen sample in the training data set. We refer to this approach as
skipping. Alternatively, the effect of anomalous data on the traffic models’ predic-
tion accuracy can be attenuated by applying adequate linear algebra operators
that aggregate training samples. We refer to this approach as smoothing.

Our goal is to investigate the impact of spatial (TL) and temporal (skip-
ping and smoothing) anomaly handling on the prediction accuracy of GP traffic
models. We achieve this by proposing a rigorously validated, robust and compet-
itively accurate approach to the urban traffic modelling and prediction problem.
This approach rests on two original contributions:

1. A novel traffic prediction algorithm, GENTLER, equipped with TL and
smoothing, that produces models transferable to areas different to those
where initial training occurs, without compromising prediction accuracy, and
is tolerant to anomalous training samples.

2. A rigorous experimental investigation of GENTLER’s prediction capabil-
ity under both normal and anomalous traffic conditions. To enable that,
GENTLER is deployed on several areas of the Birmingham city centre and
trained on traffic data collected both before and during the 2022 Common-
wealth Games. GENTLER [12], a precursor algorithm featuring TL and
skipping, is used as a benchmark. The full factorial experiment presented in
section 5 demonstrates the competitiveness of the two algorithms in a variety
of traffic conditions.

A summary of relevant work conducted in the traffic modelling and prediction
domain is given in section 2. Section 3 presents a simple yet illuminating example
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that highlights the value adding potential of incorporating vectorial elements into
our existing algorithm. The paper’s two original contributions are the topics of
sections 4 and 5. Section 6 outlines our conclusions.

2 Background

Traffic prediction by means of traditional time series modelling and machine
learning has been receiving significant attention [4, 11]. Traditional time series
modelling, based on the auto-regressive integrated moving average (ARIMA)
method and its variants, is well-suited to cases where short-term predictions (a
few hours into the future) are sufficient. Conversely, machine learning approaches
such as supervised learning underpinned by deep neural networks [4, 11, 1] and
hybrid models [10], have proven successful for short, medium and longer term
predictions (up to one week). Yet, they typically require extensive training [1].
This downside can be mitigated by turning to evolutionary algorithms: versions
specifically tailored to tackle complex problems related to urban transport have
been successfully applied to automate traffic signal management [5, 13], design
bus route networks with a reduced environmental impact [8], locate electric
vehicle charging stations [6], etc.

Another promising approach to traffic prediction is related to transfer learn-
ing, a technique that enables transferring models trained on data collected from
one area (source) to a neighbouring one (target), where traffic readings may not
be available. Li et al. report competitive results when applying transfer learn-
ing to highway traffic [9]; their findings are predicated on source and target
traffic exhibiting similar patterns, which is less likely when it comes to the com-
plex road networks within major cities. Modelling traffic through those networks
requires a more sophisticated version of transfer learning: one example is GE-
Netic programming with Transfer LEarning (GENTLE) [7], an algorithm that
produces robust models of urban traffic, transferable from source to target junc-
tions with no need for additional training on the latter. A lag operator ensures
that historical traffic flow values can be taken into account in a computationally
efficient way, without inflating the terminal set with lagged input terms. GEN-
TLER [12] is an extension of GENTLE whereby, in the case of transfer from
multiple sources, the models copied over from one source junction to the next
are supplemented with a configurable amount of random trees, in an attempt
to achieve a better exploration-exploitation trade-off. When its parameters are
optimally configured, GENTLER yields models of significantly better accuracy
than GENTLE.

GENTLE and GENTLER use traditional scalar-based symbolic regression.
By contrast, Vectorial Genetic Programming (VE-GP), a recent approach specif-
ically designed to model time series [2], utilises vector terminals and vectorial
functions, both aggregate and cumulative. VE-GP is applied on a real-life phys-
iological time series prediction problem. When the specifics of the healthcare
problem domain are abstracted out, sufficient similarities to traffic prediction
remain to justify incorporating certain VE-GP components into GENTLER.
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3 Motivating Scenario

The example analysed in this section is a simplified version of a real-world traffic
modelling problem. It uses a basic road layout to explain how anomaly handling
mechanisms operate across space (TL) and time (lag operator enabling skipping
and linear algebra operators facilitating smoothing) in order to produce accurate
traffic predictions that hold under both typical and anomalous conditions.

Fig. 1: Three central Birmingham areas monitored before and during the 2022
Commonwealth Games: sensors 1 and 2 measure inflow traffic; the unlabeled
sensor captures outflow traffic.

3.1 Traffic Anomaly Handling Over Time: Skipping and Smoothing

Let us consider a topology with two inflow lanes, x0 and x1, and one outflow
lane, y. This could be assimilated to any of the three areas shown in Fig. 1, where
sensors 1 and 2 monitor inflow, whilst the remaining sensor records outflow, every
∆t minutes, over a time interval of length L. Assuming ∆t = 15 and L = 60,
the traffic readings are stored in matrix R.

R =

x0(t0) x0(t1) x0(t2) x0(t3)
x1(t0) x1(t1) x1(t2) x1(t3)
y(t0) y(t1) y(t2) y(t3)

 (1)

The number of rows in matrix R is given by the number of monitored lanes,
whereas the number of columns is equal to the number of traffic readings col-
lected throughout the monitoring interval L. Symbol x0(t0) represents the num-
ber of vehicles passing through input lane x0 at the beginning of the monitor-
ing interval, x1(t1) stands for the number of vehicles recorded ∆t minutes later
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through input lane x1, whilst y(t3) marks the number of vehicles exiting through
outflow lane y at the end of the monitoring interval. The other symbols in matrix
R are to be interpreted in a similar fashion.

Model Representation GENTLER builds models of the traffic flowing through
lane y by combining scalar terminal nodes from set T and arithmetic operator
nodes from set O, both given in equation (2). Operator / stands for protected
division, which returns 1 whenever the right hand side operand is 0. Set O also
includes a unary lag operator that returns the value of its input delayed by one
sampling interval, ∆t.

T = {x0, x1, y} O = {+,−,×, /, lag} (2)

In the case of GENTLER, traffic models are represented as combinations of the
vector terminals and linear algebra operators given in equation (3). The elements
of set T correspond to the rows in matrix R, in the order given by their indices.
The first four elements of set O are unary aggregate operators that output,
respectively, the mean, sum, maximum and minimum of their input vectors. The
following four elements perform the same operations cumulatively, whereas the
final four represent the traditional vector addition, subtraction, element-wise
product and element-wise protected division. The complete definitions (with
examples) of all operators in set O are available in [2].

T = {x0, x1, y}
O = {V_mean,V_sum,V_max,V_min,

C_mean,C_sum,C_max,C_min,

VsumW,V_W,VprW,VdivW}

(3)

Let us consider the tree-like traffic models M and M in Fig 2. The output of
the GENTLER tree M represents the predicted vehicle flow, ŷ(t), through the
output lane.

ŷ(t) = (x0(t) + x1(t− 2))/c, t ∈ [t0, . . . , t3], c = const (4)

The GENTLER model M outputs a vector, the elements of which are pre-
dicted outflow values at each time instant in the monitoring interval.

[ŷ(t0), ŷ(t1), ŷ(t2), ŷ(t3)] = 1/c× [x0(t0), x0(t1), x0(t2), x0(t3)]

+1/4c× (4x1(t0) + 3x1(t1) + 2x1(t2) + x1(t3)), c = const
(5)

Model Evaluation In order to determine the prediction accuracy (i.e., the
fitness) of the traffic models, their outputs are compared against the readings
in the third row of matrix R. Assuming that only the first three columns in
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Fig. 2: Model representation in GENTLER (tree M , on the left) and in
GENTLER (tree M , on the right).

matrix R are used for training, the fitness of model M is

√
1
3

2∑
i=0

(ŷ(ti)− y(ti))2,

a scalar. The values ŷ(t), t ∈ [t0, . . . t2] featured in equation (6) are those given
in equation (4).

3× (fitness(M))2 =

2∑
i=0

(ŷ(ti)− y(ti))
2 =

(x0(t0)/c− y(t0))
2 : t0

+(x0(t1)/c− y(t1))
2 : t1

+((x0(t2) + x1(t0))/c− y(t2))
2 : t2

(6)

By contrast, the fitness of M is a vector, as shown in equation (7) where values
ŷ(t), t ∈ [t0, . . . t2] are given in equation (5). However, GENTLER calculates the
root mean squared error (RMSE) of candidate models by squaring and averaging
the elements of the fitness vector, leading to a scalar value much like in the case
of GENTLER.

fitness(M) = [ŷ(t0)− y(t0), ŷ(t1)− y(t1), ŷ(t2)− y(t2)] (7)

The fitness of models M and M reveals the different ways in which GENTLER
and GENTLER are equipped to handle anomalies in the training data. In cases
where traffic is affected by road construction, accidents, popular sporting events,
etc., GENTLER manages the disruption by skipping over (potentially) anoma-
lous readings: as shown in equation (6), the prediction generated by model M is
unaffected by samples x1(t2) and x1(t1). GENTLER employs a different mecha-
nism: the unary operators in set O have a smoothing effect in that data samples
are aggregated and cumulated (see second line of equation (5)) which reduces
the impact of anomalous readings on the prediction accuracy.

3.2 Traffic Anomaly Handling Across Space: Transfer Learning

In a real-world setting, it is often the case that some areas of a city’s road
network, say A1 and A2 in Fig. 1, are reliably monitored, whilst others are not
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(the equipment sensing traffic through A3 is faulty, has been incorrectly installed
or is missing altogether). Regardless, an accurate model of A3 traffic is needed all
the same (e.g., to help decision makers determine the layout of new roads to be
built in the area in order to streamline vehicle flow, thus reducing delays, accident
rates and pollution). In the absence of native data, A3 traffic models need to be
trained on neighbouring junctions A1 and A2 then transferred over to A3 (see [7]
for a detailed explanation of the transfer learning process). For the transfer to be
successful, the exogenous model (trained on A1 and A2) would need to predict
traffic as accurately as an indigenous one (trained on A3, assuming data were
available to make that possible). The experimental investigation documented in
section 5 demonstrates that this is indeed the case: exogenous models produced
by both GENTLER and GENTLER, on various combinations of typical and
anomalous training data sets predict traffic with an accuracy that is comparable
to that of indigenous models.

4 GENTLER Explained

We propose GENTLER, vectorial GENetic Programming with Transfer LEarn-
ing and Randomisation, that features the following components:

1. classic Symbolic Regression enhanced with transfer learning and bespoke
exploration-exploitation tuning (also found in GENTLER [7]);

2. vectorial representation (i.e., vector terminals and linear algebra operators
enabling smoothing); and

3. vectorial fitness, customised with a penalty mechanism designed to punish
models with scalar outputs (i.e., vectors filled with copies of the same ele-
ment), thus increasing the selection pressure in favour of trees with (true)
vectorial outputs, which are more likely to be accurate traffic predictors.

Algorithm 1 illustrates how GENTLER and GENTLER evolve traffic models.
Each row in matrix models (line 1) represents the population at a given gener-
ation: for GENTLER, the candidate models will be similar to M in Fig. 2 (note
the skipping-enabling lag operator), whereas for GENTLER, the trees will look
like M . Line 2 initialises the estimator, i.e., the object wrapper for gp learn’s
SymbolicTransformer2, with all expected evolutionary parameters (see Table
2 caption). On line 3 the estimator evolves the population of candidate models,
for G1 generations on training data collected from the first source (src1, which
can represent any area in Fig. 1).

The fit method in the gp learn library implements the classic GP loop; one
of the steps involved is fitness calculation. This is presented in algorithm 2, which
runs for every element in models[Gi], where Gi is the current generation. Lines
2 through 5 illustrate the classic RMSE calculation, over all trn samples in the
training data set (containing readings collected from src1 if Gi ≤ G1 or from the
second source, src2, if Gi > G1). This is where smoothing occurs, as an effect

2 https://gplearn.readthedocs.io/en/stable/reference.html#symbolic-transformer
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Algorithm 1 GENTLER and GENTLER essential logic
1: models← [ ][ ]
2: estimator.init()
3: models[G1]← estimator.fit(getTrainData(src1))

4: ################ Transfer Learning with Randomisation
5: if mix == 0 then
6: models[G1 + 1]← makeRndModels(N)
7: else
8: if mix == 1 then
9: models[G1 + 1]← models[G1]

10: else
11: models[G1 + 1]← getBest(models[G1], hof, cmp,mix×N)

∪ makeRndModels((1−mix)×N)
12: end if
13: end if##################################

14: models[G2]← estimator.fit(getTrainData(src2),models[G1 + 1])
15: return getBest(models[G2])

of the cumulative and aggregation operator featured in ŷ(t). The result, rmse,
represents the fitness of the model. Fitness calculation in GENTLER implies an
additional step (lines 6 through 9): should the output of the current model M ,
i.e., the vector containing predicted values ŷ for each of the time instants in the
training set, contain identical elements (indicating a scalar output), chances are
that model will not yield a competitive prediction accuracy, therefore its fitness
is increased by a factor of 100 (pen on line 8).

Once the population at generation G1 becomes available, algorithm 1 con-
tinues to the transfer learning stage. This occurs when traffic is to be predicted
through a (target or destination) area where historical vehicle flow data are not
available (because sensing equipment is absent, faulty or incorrectly installed, or
because the target has not yet been built). In these cases, training data have to
be collected from adjacent locations (e.g., neighbouring junctions where reliable
traffic readings are available), called sources. For illustration, suppose that any
one of the areas in Fig. 1 is the destination. Any combination of the remaining
two areas (sources) can be used to train the traffic models aimed to predict traffic
through the destination; GENTLER assumes two such sources, src1 and src2. In
that context, transfer learning consists in training the candidate models on data
collected from src1 for G1 generations (from 1 to G1) and then on data collected
from src2 for G2 − G1 generations (from G1 + 1 to G2). Thus, the traffic pat-
terns learnt from src1 data and further refined on src2 data are transferred over
to the destination to produce predictions (since all possible destinations shown
in Fig. 1 already exist and are monitored, we use those data to validate the
transferred model). The selection process of the trees to be transferred between
sources (from generation G1 to G1 + 1) is controlled by three parameters:
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Algorithm 2 GENTLER and GENTLER fitness calculation

1: rmse = 0
2: for t in [t0, . . . , ttrn] do
3: rmse← rmse+ (ŷ(t)− y(t))2

4: end for
5: rmse←

√
rmse/(trn+ 1)

6: ####################### penalty (GENTLER only)
7: if ŷ(t) identical, ∀t in [t0, . . . , ttrn] then
8: rmse← rmse× pen
9: end if##################################

10: return rmse

– hof the number of trees (in order of fitness, starting with the most accurate)
to include in the hall of fame and consider for transfer;

– cmp the number of least correlated components (trees) within the hall of
fame to be transferred to src2; and

– mix a real number between 0 and 1 representing the proportion of trees
transferred from src1 relative to random trees.

Lines 5 through 13 show the three possible ways of putting together the N
models in the population at generation G1 + 1, depending on the mix value:

– All models are random (lines 5, 6): all traffic patterns learnt on the first
source are lost; training starts afresh on src2 (equivalent to pure exploration).

– No models are random (lines 8, 9): all traffic patterns learnt on the first
source are transferred over to src2 where training resumes (equivalent to
pure exploitation).

– Some models are random (lines 11, 12): mix × N of the most accurate,
least correlated cmp trees trained on src1 are transferred over to src2, and
the remaining positions are filled with randomly generated models (balance
between exploitation and exploration).

The configurable amount of random trees injected at generation G1 +1 dynam-
ically adjusts the exploration-exploitation ratio: if optimally chosen, the mix
value will make it possible to leverage the traffic patterns learnt from the first
source as well as maintain a healthy amount of genetic diversity.

Once the transfer from the first to the second source is complete, the fit
function is called again, on line 14, to evolve the models at generation G1 + 1
for G2 −G1 additional generations, on src2 training data. Method getBest (line
15) returns the most accurate model at generation G2; its output can then be
used to predict traffic through the destination (and be validated, if destination
traffic readings are available).
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5 Experimental Investigation

5.1 Sensor Selection and Traffic Readings Analysis

Transport for West Midland (TfWM) has 178 sensors installed across Birming-
ham3. Out of the ones covering the city centre, we eliminated those with null
outputs (most likely due to faults) and those that recorded significantly fewer
than 96 samples a day (i.e., captured data less frequently than every 15 min).
The remaining sensors monitor vehicle flow through areas A1, A2 and A3 in
Fig. 1. A stream of arrows indicates the direction of traffic: inbound vehicles are
counted by sensors 1 and 2, whereas outbound ones are captured by the third
sensor (unlabeled) in each of the considered areas.

The nine sensors collected data before and during the 2022 Commonwealth
Games that took place in Birmingham: readings captured between the 25th of
April and the 29th of May are taken to represent traffic under normal conditions,
whereas values recorded between the 25th of July and the 28th of August are
indicative of traffic under anomalous conditions (i.e., disrupted by restrictions
put in place to accommodate for the various sporting events). We conducted full
factorial experiments with GENTLER and GENTLER, considering all possible
combinations of source and destination areas, with relevant models trained and
validated (60-40 data split) under normal and anomalous conditions; the results
are presented in Table 2.

The TfWM traffic monitoring exercise is young: measurements are of poor
quality compared to other major EU municipalities4. The two principal chal-
lenges are unevenness (standard deviations reported in Table 1 are very high
compared to averages, particularly in A2) and scarceness (most acutely in A3,
where there are no sensors monitoring traffic through the main road, which is
intensely used by motorists going round the Clean Air Zone to avoid fees). Al-
though these data quality related problems are bound to negatively impact the
accuracy of the traffic models, we chose not to eliminate outliers during pre-
processing, as there is no way to determine whether they are indicative of sensor
malfunctions or of spikes in real traffic; their deletion would either deplete the
data pool or overly-sanitise it, making it difficult for the ensuing experiments
to authentically highlight the strengths of GENTLER and GENTLER. Instead,
we chose to use the native models (trained and validated on data from the same
area) as a baseline, in order to ascertain the relative quality of non-native ones
(trained and validated on data collected from different areas), thus showcasing
the effectiveness of transfer learning with smoothing and skipping under realistic
(in this case, sub-optimal) conditions. We argue that this is a valid experimental
approach, as transfer learning is meant to provide models of traffic through areas
where native data are not available (roads that are not monitored or yet to be
built). For comprehensive evidence that the two algorithms work efficiently on
high quality data, the interested reader is referred to [7, 12].

3 https://data-tfwm.opendata.arcgis.com
4 Such as Darmstadt: https://www.ui.city/en/.
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Table 1: Output sensor data used to validate all traffic models: relevant stats.

Normal Anomalous
A1 A2 A3 A1 A2 A3

Count 1344 1344 1344 1344 1344 1344
Mean 77.73 9.73 160.58 55.60 26.45 150.46
SD 43.00 16.08 83.43 46.28 18.92 80.16
Min 0 0 6 0 0 9
Max 194 100 383 209 173 337

Table 2: GENTLER and GENTLER model accuracy: hof, cmp,mix = (717,
68, 0.28); for all other evolutionary parameters see [12]; RMSE is lowest over
30 runs; % RMSE is the ration of RMSE to the mean of the corresponding
validation dataset in Table 1.

NN NA AN AA
Combination RMSE % RMSE RMSE % RMSE RMSE % RMSE RMSE % RMSE

GENTLER

A1 -> A1 20.19 25.97 15.59 28.04 20.41 26.26 15.51 27.89
A2 -> A1 20.58 26.48 16.85 30.31 20.73 26.67 16.92 30.42
A3 -> A1 415.62 534.67 372.11 669.20 523.20 673.06 240.99 433.40

A2, A3 -> A1 42.04 54.08 38.35 68.97 21.12 27.17 17.33 31.17
A3, A2 -> A1 29.78 38.31 24.09 43.33 30.33 39.02 24.57 44.20

A2 -> A2 5.60 57.54 10.65 40.28 5.56 57.15 10.67 40.35
A3 -> A2 216.92 2228.22 324.29 1225.66 326.51 3354.00 338.71 1280.16
A1 -> A2 5.68 58.42 10.75 40.63 5.69 58.46 10.81 40.86

A3, A1 -> A2 9.72 99.91 16.59 62.70 8.69 89.29 12.67 47.88
A1, A3 -> A2 6.68 68.68 14.20 53.69 6.68 68.68 14.20 53.69

A3 -> A3 48.33 30.10 57.46 38.19 50.54 31.47 66.09 43.92
A2 -> A3 151.90 94.59 140.44 93.34 137.97 85.91 139.49 92.71
A1 -> A3 150.89 93.96 138.20 91.85 127.33 79.29 126.50 84.07

A2, A1 -> A3 117.73 73.31 129.76 86.24 124.36 77.44 127.36 84.64
A1, A2 -> A3 115.82 72.12 127.11 84.48 121.37 75.58 128.44 85.36

GENTLER

A1 -> A1 19.28 24.80 15.72 28.27 19.13 24.61 15.34 27.58
A2 -> A1 21.01 27.03 16.53 29.73 20.69 26.62 16.37 29.45
A3 -> A1 42.45 54.62 38.68 69.57 47.13 60.63 51.86 93.27

A2, A3 -> A1 32.02 41.19 24.13 43.39 42.34 54.47 38.62 69.45
A3, A2 -> A1 30.62 39.39 27.48 49.42 33.28 42.82 24.61 44.26

A2 -> A2 5.65 58.11 10.40 39.33 5.67 58.31 10.23 38.68
A3 -> A2 12.77 131.20 20.31 76.78 47.25 485.35 48.88 184.75
A1 -> A2 5.73 58.87 10.98 41.52 5.65 58.10 10.57 39.95

A3, A1 -> A2 7.13 73.30 14.34 54.23 12.12 124.59 15.27 57.74
A1, A3 -> A2 9.85 101.19 13.61 51.43 13.14 135.00 20.26 76.58

A3 -> A3 48.16 29.99 52.82 35.11 44.80 27.90 53.03 35.24
A2 -> A3 94.47 58.83 91.18 60.60 94.47 58.83 91.18 60.60
A1 -> A3 86.28 53.73 97.83 65.01 83.27 51.85 85.76 57.00

A2, A1 -> A3 110.19 68.62 99.88 66.38 105.45 65.66 96.59 64.19
A1, A2 -> A3 89.48 55.72 83.12 55.24 100.27 62.44 100.14 66.55
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5.2 Results Discussion

We ran GENTLER and GENTLER on all source and destination combinations
achievable considering the three areas in Fig. 1. The Combination column in Ta-
ble 2 lists the source area(s), where training is performed, to the left of the arrow
and the destination area, where validation takes place, to the right of the arrow.
The experiments we conducted are of two types: homogeneous, where training
and validation take place on data collected under matching conditions, and het-
erogeneous, where training is performed on normal readings and validation on
abnormal ones and vice-versa. Experimental results in the former category are
presented in the columns headed NN and AA, whereas findings in the latter
category are reported in columns NA and AN (the first letter refers to training
and the second to validation).

Modelling Traffic under Normal Conditions This segment of the exper-
imental analysis is aimed at investigating the impact of transfer learning on
model accuracy. It relies on data presented in the two columns of Table 2 under
the NN heading.

With an average of 9.7 outgoing vehicles (see Table 1), the flow of traffic
through the A2 area under normal conditions is severely limited. Output traffic
in the A1 area is significantly higher (77.7 vehicles passing by the Morrisons
sensor, on average), with A3 being by far the busiest of the three (160.6 average
output flow through the Matalan monitoring point, more than double the volume
of traffic out of A1). However vehicle flow through A3 is also the least even, with
acute variations in the number of recorded outgoing vehicles, as indicated by a
standard deviation of 83.4, twice as high as in the case of A1. These statistics
suggest that models trained and validated on data collected from the A1 area are
likely to be the most accurate of the three. This is confirmed by the experimental
results: out of the three native models produced by GENTLER, the one trained
and validated on A1 data has the highest accuracy (relative RMSE of 26%) and
transfers over efficiently to A2: the model trained on A1 data and validated on
A2 data is of comparable accuracy to the A2 native model (relative RMSE of
58.4% in the case of the former, compared to 57.5% in the case of the latter). The
same applies to GENTLER models: 58.9% relative error when training on A1
and transferring to A2, compared to 58.11% achieved by the A2 native model.

The extreme variations in the A3 data make it very difficult to benefit from
vehicle flow patterns learnt on the much better behaved A1 traffic: the GEN-
TLER model trained on A1 data and validated on A3 data is more than three
times less accurate than the native A3 model, a result that doesn’t change when
the source junction is A2. When it comes to GENTLER, single source transfer
learning works better: training models on A1 and, respectively, A2 data results
in an accuracy loss (relative to the native A3 model) that is over one order of
magnitude smaller than in the case of GENTLER.

The situation improves further when training occurs on A1 and A2 data, sub-
sequently as opposed to separately, before the transfer to A3: the GENTLER
models’ relative RMSE drops from the 93% - 94% range (which is the case for
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single source transfer learning), to the 72% - 73% one (achieved for multiple
source transfer learning). GENTLER models, single source and multiple source,
with A3 as the destination, are all in the 53.7% - 58.8% band, with the excep-
tion of the one trained on A2 and then on A1, which is approximately 10% less
accurate. As expected, A3 models transfer over very poorly in all single and
multiple source combinations. Whilst GENTLER completely fails to apply pat-
terns learnt during A3 training in order to model traffic through A1, GENTLER
manages to produce a single source transfer model that is half as accurate as the
A1 baseline (the former has a prediction error of 54.6% as opposed to 24.8% in
the case of the latter). GENTLER continues to generate single source transfer
learning models of superior accuracy to that of GENTLER ones when A3 is the
source and A2 the destination. However, both algorithms yield multiple source
transfer learning models that significantly outperform single source ones, for all
three destinations considered in this study.

This part of the experimental analysis indicates that, under normal condi-
tions (i.e., when vehicle flow through both source and destination junctions is
relatively even, as is the case for A1 and A2 but not for A3), transfer learn-
ing models and native ones are comparably accurate regardless of overall traffic
volume (which is much higher through A1 than A2). Multiple source transfer
learning models (that benefit from two bouts of training on different source ar-
eas before being validated on the destination one) are consistently superior to
single source models. In situations where native models are not available, this
experimental conclusion supports our claim that transfer learning models can be
be confidently used as competitive substitutes.

Modelling Traffic under Anomalous Conditions This segment of the
experimental analysis is aimed at comparing transfer learning with skipping
(GENTLER) against transfer learning with smoothing (GENTLER), in terms
of their efficiency at producing traffic models that are competitively accurate,
even though they were trained and validated on data affected by anomalies (i.e.,
vehicle flow disruptions caused by restrictions put in place during the Common-
wealth Games). The relevant data are included in the two columns of Table 2
under the AA heading.

Out of the three areas, A2 continues to have the lowest outflow (see columns
under the Anomalous heading in Table 1). However, compared to pre-Games
readings, traffic exiting A2 through the roundabout at the entrance to the Chi-
nese Quarter is three times as busy. Taken in conjunction with the decreased
average flow out of A2 and A3, this suggests that, during the Games, a signif-
icant part of Five Ways and Moor St traffic was diverted via the roads around
The Mailbox and New St Station. This appears to have had very little effect on
the vehicle flow evenness: standard deviation levels under anomalous conditions
are comparable to pre-Games ones.

Overall, both skipping and smoothing are efficient at modelling the changes
in traffic patterns during the Games:
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– A1 predictions stay in the same accuracy band. The A1 native model pro-
duced by GENTLER (skipping) has an average RMSE of 27.9% compared to
26% before the Games, whereas the GENTLER model (smoothing) performs
at 27.6% compared to 24.8% pre-Games.

– A2 predictions become better: skipping takes the average RMSE down from
57.5% to 40.3%, whereas smoothing achieves a model accuracy increase of
almost 20 percentage points. Since A2 is the recipient of traffic diverted from
the other two areas during the Games, the fact that both temporal anomaly
handling mechanisms we propose are effective at accurately capturing that
dynamic is evidence in support of our contributions’ value.

– A3 predictions become marginally worse: skipping leads to an increase in the
average prediction error from 30.1% pre-Games to 43.9%, whilst smoothing
performs better, causing a precision loss of only 5 percentage points.

Transfer learning interacts with skipping in the expected way: GENTLER
fails to transfer traffic patterns learnt whilst training on A3 (the area where the
output validation data set has the highest standard deviation) to either A1 or
A2 destinations. However, when training takes place on A3 and a second source,
skipping brings down the average error recorded in the destination area by as
much as 52 percentage points compared to pre-Games levels. The transfer learn-
ing, smoothing combination leads to single source transfer models comparable to
those produced by GENTLER. They are outperformed by GENTLER models
trained on multiple sources, most notably when A2 is the destination: there is a
drop in prediction error of 15 to 24 percentage points compared to pre-Games
levels. This adds to the above mentioned evidence attesting to the efficiency of
our temporal anomaly handling mechanisms, in that they are now shown to also
be effective in combination with spatial anomaly handling (transfer learning).

Modelling Traffic under Mixed Conditions This segment of the experi-
mental analysis is aimed at investigating the efficiency of transfer learning with
skipping (GENTLER) and transfer learning with smoothing (GENTLER) at
predicting anomalous traffic based on patterns learned from normal one and
vice-versa. The investigation is based on the data in the four columns at the
centre of Table 2 (headed NA and AN).

The performance of the native models produced by GENTLER indicates
that skipping is just as effective under heterogeneous conditions (i.e., models
are trained on normal traffic and validated on anomalous one or vice-versa) as
it is under homogeneous ones (i.e., models are both trained and validated on
either normal traffic or abnormal one): the two heterogeneous A1 native models
are in the 26.3% - 28% error range, where the homogeneous ones also lie, with
a similar conclusion to be drawn for A2 and A3. It is particularly relevant to
note that regardless of whether their training occurs under normal or anoma-
lous circumstances, native models predict either type of traffic comparably well.
This is most obvious in the case of A2: the AN and NN models are practi-
cally equally accurate (approximately 57% average prediction error), whilst the
same can be said about the NA and AA models (circa 40% average prediction
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error). Analysing the performance of GENTLER native models yields similar
experimental findings. This implies that, whenever it is necessary to model fu-
ture traffic anomalies (e.g., predict vehicle flow during the 2026 edition of the
Games) for which anomalous training data is yet to become available, skipping
and smoothing make it possible for training to be performed on data collected
under normal circumstances, without compromising the prediction accuracy.

Discounting combinations that include source A3, where vehicle flow is too
uneven to allow for the efficient transfer of learnt patterns across areas, all single
and multiple source transfer learning models perform within an accuracy band
of approximately 10 percentage points. When combining knowledge learnt by
training on A1 and A2 (in either order), skipping produces models capable of
predicting normal traffic within a 4% error margin, regardless of whether train-
ing took place under normal or anomalous circumstances. When it comes to
predicting anomalous traffic, the same source combination, when skipping is ap-
plied, brings the margin down to 2.4%. Also note that all four multiple source
transfer learning models produced by GENTLER, where A3 is the destination,
outperform native models by at least 8% and as much as 21%. Smoothing is less
effective than skipping at producing multiple source transfer models that rival
the accuracy of native ones (when A3 is the destination, the prediction quality
of GENTLER models worsens by as much as twofold). Yet, the observation re-
garding the relative competitiveness of heterogeneous and homogeneous models
continues to be valid in the case of smoothing: GENTLER models trained on
A1 and A2 (in either order) are within the 2.1% - 10.3% accuracy band.

6 Conclusions

Traffic modeling and prediction are central to efficient intelligent transportation
which, in turn, is a key component of the smart cities initiative and the UN’s
Sustainable Development strategy. It is thus essential that efficient algorithms be
developed to produce traffic predictions with competitive accuracy in a variety
of practical settings: the area where traffic is being predicted has not been fitted
with sensing equipment, the traffic predictions will inform city planners’ decision
making concerning the layout of new roads, the traffic readings used for training
were collected during sporting events or other kinds of short and medium term
disruption, etc.

To cater to such needs, we propose GENTLER, a traffic modelling and pre-
diction algorithm that leverages Genetic Programming enhanced with Transfer
Learning and randomisation, on the one hand, and presents increased toler-
ance to training data anomalies, on the other hand. The former quality enables
GENTLER to predict vehicle flow through areas where traffic data are not avail-
able, by learning from readings collected on neighbouring areas of the road net-
work. The latter feature is afforded by linear algebra functions that mitigate the
effect of training outliers via aggregation and cumulation.

GENTLER produces competitive models regardless of whether the training
and validation data were collected during typical or anomalous traffic conditions.
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We support that claim with a comprehensive set of experimental results obtained
by running GENTLER on traffic readings obtained before and during the 2022
Birmingham Commonwealth Games. Those results indicate that the prediction
accuracy of GENTLER models does not deviate from the GENTLER reference
in a statistically significant way. In other words, when native models are not
available, or heterogeneous predictions are required, running transfer learning
equipped with smoothing and, respectively, skipping, selecting the most accurate
of the resulting models and using it to predict traffic through the destination
area will yield a level of accuracy that is comparable to baseline.
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