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A B S T R A C T

When combined with source modeling, magneto- (MEG) and electroencephalography (EEG) can be used to study
long-range interactions among cortical processes non-invasively. Estimation of such inter-areal connectivity is
nevertheless hindered by instantaneous field spread and volume conduction, which artificially introduce linear
correlations and impair source separability in cortical current estimates. To overcome the inflating effects of linear
source mixing inherent to standard interaction measures, alternative phase- and amplitude-correlation based
connectivity measures, such as imaginary coherence and orthogonalized amplitude correlation have been pro-
posed. Being by definition insensitive to zero-lag correlations, these techniques have become increasingly popular
in the identification of correlations that cannot be attributed to field spread or volume conduction. We show here,
however, that while these measures are immune to the direct effects of linear mixing, they may still reveal large
numbers of spurious false positive connections through field spread in the vicinity of true interactions. This
fundamental problem affects both region-of-interest-based analyses and all-to-all connectome mappings. Most
importantly, beyond defining and illustrating the problem of spurious, or “ghost” interactions, we provide a
rigorous quantification of this effect through extensive simulations. Additionally, we further show that signal
mixing also significantly limits the separability of neuronal phase and amplitude correlations. We conclude that
spurious correlations must be carefully considered in connectivity analyses in MEG/EEG source space even when
using measures that are immune to zero-lag correlations.
Introduction

Inter-areal interactions among neuronal ensembles during rest or in
active tasks are a hallmark of integrative brain function and have been
the focus of a thriving body of research over the last decade (Bastos and
Schoffelen, 2016; Biswal et al., 2010; Brookes et al., 2011; Foster et al.,
2016; Harris and J. A. Gordon, 2015; Hutchison et al., 2013; Karl J.,
2011; Mantini et al., 2007; Pizzella et al., 2014; Schoffelen and J. Gross,
2009; Siems et al., 2016; Sporns, 2015; van Diessen et al., 2015).
Magneto- (MEG) and electro-encephalography (EEG) offer a highly
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valuable approach for probing these interactions both by yielding direct
electrophysiological recordings of neuronal activity, whole-head
coverage and, most importantly, the millisecond-range temporal resolu-
tion required for observing fast neuronal dynamics. However, limited
spatial resolution and signal processing complexities require attention to
subtleties in the obtained coupling results and may lead to erroneous
interpretations of the data.

A central problematic issue results from signal spread, which trans-
lates to volume conduction in the case of EEG recordings, to field spread
when it comes to MEG, and to signal leakage in source reconstructed EEG
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Table 1
Division of interaction metrics into four groups by the correlation they measure
(phase or amplitude) and their sensitivity to zero-phase lag interactions. (cf.
Vinck et al., 2011).

MEG/EEG interaction measures False Positives

Artificial
interaction

Spurious (ghost)
interaction

Phase correlation measures
Coherence (Coh), Bendat and Piersol, 1986 ✓ ✓

Phase locking value (PLV), Jervis et al.,
1983; Lachaux et al., 1999

✓ ✓

Mutual information (MI), Kraskov et al.,
2004

✓ ✓

Pairwise phase consistency (PPC) Vinck
et al., 2010

✓ ✓

Imaginary part of coherency (ImC), Nolte
et al., 2004

⨯ ✓

Phase lag index (PLI), Stam et al., 2007 ⨯ ✓

Imaginary phase locking value (iPLV), Palva
et. 2012

⨯ ✓

Weighted phase lag index (wPLI), Vinck
et al., 2011

⨯ ✓

Amplitude correlation measures
Correlation coefficient (CC) Schoffelen et al.,
2009

✓ ✓

Orthogonalized correlation coefficient (oCC)
Hipp et al., 2012, Brookes et al., 2012

⨯ ✓
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or MEG data. In both MEG and EEG, a spatially widespread group of
sensors detects the activity of any single neuronal source. Therefore,
correlations among signals measured at two distant sensors do not
necessarily reflect the existence of two distinct interacting cortical
sources. On the other hand, from the perspective of individual sensors,
the same sensor can always pick up multiple sources. Thus, two instan-
taneously interacting (i.e., zero phase lag) sources are difficult to be
distinguished from a single source whose activity recorded by the same
sensors. In addition to these theoretical limitations due to signal spread
effects, difficulties in relating results of sensor-level interaction analyses
to known anatomical or functional systems, even if caused by true in-
teractions, provide further arguments to why in general interaction an-
alyses should not be performed in sensor space.

The application of source estimation techniques to MEG/EEG data,
followed by performing interaction analyses on reconstructed source
activations, alleviates but does not fully solve the detrimental effects of
signal spread (Gross et al., 2013; Palva and J. M. Palva, 2012; Schoffelen
and J. Gross, 2009). Inverse modeling techniques use spatiotemporal
channel information and provide a plausible distribution of neuronal
currents that may have generated the sensor-level measurements. The
properties (e.g., the spatial smoothness) of the reconstructed source ac-
tivity depend on the assumptions on which the inverse operator is built
and vary across different inverse solutions (Baillet and Garnero, 1997;
Gross et al., 2001; Hamalainen and R. J. Ilmoniemi, 1994; Van Veen
et al., 1997). No inverse solution, however, is perfect, and the interpre-
tation of analysis results based on source reconstructed data should al-
ways consider the inherent spatial limitations of the inverse technique
used. I.e., residual signal leakage will always characterize the source
data. Generically, these spatial limitations can be investigated using
realistic simulations that employ accurate forward models, in order to
evaluate the inverse technique's point spread (PSF) and cross-talk func-
tions (CTF) (Hauk and Stenroos, 2014; Hauk et al., 2011; Korhonen et al.,
2014; Liu et al., 2002; Lütkenh€oner, 2003). These functions quantify, as a
function of space, for any given source location, the extent to which the
activity at the given location leaks to other locations (PSF), and the extent
to which activity that leaks from other locations affects the estimate of
the source activity at the given location (CTF). Both measures can be
obtained from the so-called resolution matrix, which is the product of the
inverse and forward operator matrices.

The detrimental effect of spatial imperfections in the inverse operator
manifests itself clearly in the context of interaction analyses between
estimated source time courses. Conceptually, the estimated interactions
can be driven either by (a) true, (b) artificial or (c) spurious interactions
among the reconstructed signals. These notions are defined in this study
as follows:

True interactions: these reflect estimated interactions that are caused
by real interactions between neuronal groups observed at the considered
locations.

Artificial interactions: these reflect estimated interactions that are
false positives and not caused by real interactions between neuronal
groups at the considered locations. Rather, the ‘significant’ coupling is
caused by signal mixing and often through cross-talk from dominant
sources at other locations and thus reflects residual effects of the signal
spread at the source level. One well-known example of this is sometimes
referred to as ‘seed blur’.

Spurious interactions: these reflect estimated interactions that are
false positives and also result from cross-talk (Palva and J. M. Palva,
2012). Yet, the distinction with the artificial interactions described above
is that the process underlying the estimated interaction is a genuine
interaction between neuronal groups but the location of the interacting
sources is misestimated. Concretely, signal spread results in pairs of
sources in the vicinity of the actual interacting sources to also display
significant coupling. In other words, spurious interactions arise as an
unwanted by-product of a truly interacting pair of sources, and can be
referred to as ghost interactions.

One commonly used strategy to minimize false positives in
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interactions estimated with MEG is to use an experimental or baseline
contrast in combination with either standard (e.g., coherence, amplitude
correlations, etc.) or artificial-interaction-insensitive (as described
below) interaction measures, and assume that the spatial structure in the
false positives is similar across conditions. Obviously, this strategy is only
applicable in situations where such contrasts can be made, and therefore
it is not applicable in task-free (resting state) situations. More impor-
tantly, the validity of the interpretations heavily relies on the untenable
assumption that the false positives are similar across conditions. For
instance, differences in signal-to-noise ratio result in trivial differences in
false positive differences in interactions (Bastos and Schoffelen, 2016).

Recent years have witnessed the development of important and
innovative measures that directly avoid false positive observations of
coupling attributable to signal spread (Brookes et al., 2012; Hipp et al.,
2012; Nolte et al., 2004; Vinck et al., 2011) (Table 1). These methods
exclude the contribution of instantaneous signal spread to the estimated
interactions, and by design, thus address the issue of artificial in-
teractions. For instance, the imaginary part of coherency (Nolte et al.,
2004) removes the zero-phase lag interactions because these are entirely
captured by the real part of coherency. Another types of measures aim to
quantify the correlation in band-limited amplitude envelopes. Here, the
signals are orthogonalized with respect to each other to remove zero-lag
mixing prior to computing the correlation between the amplitudes
(Brookes et al., 2012; Hipp et al., 2012).

While these methods can be very useful, they have an important
limitation. Ignoring near-zero-lag interaction components makes the
interaction estimate insensitive to leakage, also true near-zero-phase-lag
interactions will remain undetected.

One important and frequently overlooked limitation of the above-
mentioned leakage insensitive measures of interactions is that these
measures do not protect against false positives due to ghost interactions,
as defined above. Steps towards addressing this problem have already
been taken in the case of amplitude correlations (Colclough et al., 2015),
but generic interaction-metric independent solutions have remained
elusive. Another subtle but equally important problem is the fact that,
due to the unavoidable signal leakage, orthogonalized envelope corre-
lation estimates may be affected by the concurrent presence of phase
coupling. These limitations pose important challenges to the physiolog-
ical interpretability of the results. Although the issue of ghost interactions
has been recognized by some experts in the field, it and the possible
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confusion of phase and amplitude couplings are not common knowledge
and hence merit more widespread awareness. The purpose of this study is
to demonstrate and quantify these ghost interactions and further eluci-
date the effects of phase coupling on orthogonalized amplitude correla-
tion estimates.

Footnote: the term “artificial” and “spurious” interactions are often
used interchangeably in the literature. Here, spurious (or ghost) in-
teractions refers only to false positives that arise independently of the
chosen interaction metric. Ghost interactions in this meaning have also
been termed “inherited” interactions (Hauk and Stenroos, 2014; Col-
clough et al., 2015). Furthermore, we do not discuss higher order arti-
ficial interactions, i.e. caused by common drive, third-party sources and
cascade effects, although identifying them is of equal importance
(Mannino and Steven L. Bressler, 2015; Mannino and Steven L. Bressler,
2015; Wollstadt et al., 2015).

Materials and methods

Simulation of signals and interactions

‘Estimated source signals’ were modelled as an instantaneous linear
mixture (to model signal spread) of underlying source time series. To
model these time series, we applied a two-stages mixing procedure.

At the first stage, we modelled the underlying ‘true’ source time series
as follows: One-dimensional randomGaussian time series ni were linearly
mixed using mixing parameters cA and cθ. The mixed time series were
filtered using complex Morlet wavelets, and time series to be used as
instantaneous amplitudes and phases were computed as follows,

AxðtÞ ¼ jFðn1ðtÞ þ cAn2ðtÞÞj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
reðFðn1ðtÞ þ cAn2ðtÞÞÞ2 þ imðFðn1ðtÞ þ cAn2ðtÞÞÞ2

q
(1)

AyðtÞ ¼ jFðn2ðtÞ þ cAn1ðtÞÞj (2)

θxðtÞ ¼ phaseðFðn3ðtÞ þ cθn4ðtÞÞÞ ¼ atan
�
imðFðn3ðtÞ þ cθn4ðtÞÞÞ
reðFðn3ðtÞ þ cθn4ðtÞÞÞ

�
(3)

θyðtÞ ¼ phaseðFðn4ðtÞ þ cθn3ðtÞÞÞ (4)

where ni is a vector containing (N¼ 50000) samples of Gaussian white
noise from ith realization; F denotes complex Morlet wavelet transform
with basis function ψðxÞ ¼ e�x2=2cosð5xÞ; cA and cθ are scalar mixing
parameters; re and im are the real and imaginary part of complex number,
respectively; A and θ are the amplitudes and phases, respectively. This
approach allows us to model phase and amplitude interactions separately
(Bruns et al., 2000).

At the second stage, the amplitudes and phases (Eqs. (1)–(4)) were
used to assemble complex-valued time series in the following manner,

xðtÞ ¼ AxðtÞeiθxðtÞ þ mAyðtÞeiðθyðtÞþϕxyÞ (5)

yðtÞ ¼ AyðtÞeiðθyðtÞþϕxyÞ þ mAxðtÞeiθxðtÞ (6)

where m is the spatial mixing parameter, modelling the instantaneous
signal spread; ϕxy is the phase shift [-π, π], controlling the mean phase
difference across sources x and y.

To demonstrate the spatial effects of signal spread, we simulated
source signals in a 13� 13 square grid layout, with inter-source distance
dg. The signal spread was modelled as a truncated 2-dimensional
Gaussian function with parameters μ¼ 0 and σ¼ dg up to a range of three
standard deviations σ so that,

mðdÞ ¼ 1

σ
ffiffiffiffiffi
2π

p e�
ðd�μÞ2
2σ2 ; if d � 3σ (7)
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mðdÞ ¼ 0; d > 3σ

Quantification of interactions

Interactions between oscillatory neuronal signals can be measured in
a variety of ways, which either rely on measuring some consistency of
phase differences, correlation of amplitudes, or on a combination of both
(Bastos and Schoffelen, 2016). Here, we quantified interactions in terms
of Phase Locking Value (PLV), and in terms of the correlation coefficient
(CC) of amplitude envelopes. In addition, we used the imaginary part of
the complex-valued PLV (iPLV) and the correlation coefficient of
orthogonalized amplitude envelopes (oCC) to account for the effects of
linear mixing.

Phase locking value (PLV) and imaginary part of phase locking value
(iPLV) quantify the strength of phase coupling. PLV is defined as the
magnitude of mean complex phase difference between amplitude-
normalized source time courses (Lachaux et al., 1999),

PLV ¼
�����
X
t

eiðθxðtÞ�θyðtÞÞ.N
����� (8)

where N is the number of samples; j⋅j denotes absolute value operator;
θx(t) and θy(t) are the phases of x(t) and y(t), respectively. iPLV, on the
other hand, is the imaginary part of the average,

iPLV ¼
�����im
 X

t

eiðθxðtÞ�θyðtÞÞ.N
!����� (9)

Thus, PLV theoretically compares to iPLV as coherence compares to
the imaginary part of coherency (Nolte et al., 2004). Nevertheless, it is
important to keep in mind that the reliability of phase estimation
inherently depends on SNR and may generally be more accurate in the
presence of higher signal amplitudes (Palva et al., 2010). Using the
imaginary part, and thus discarding all real-valued contributions to the
estimated interactions, effectively discards all zero-lag interactions, most
of which are caused by instantaneous mixing and thus are considered
detrimental to correlation estimates.

Amplitude correlations were quantified using the Pearson correlation
coefficient (CC) between amplitude envelopes of x(t) and y(t), Ax(t) and
Ay(t),

CC ¼
N�1

P
t

�
AxðtÞ � μAx

��
AyðtÞ � μAy

	
σAxσAy

¼ corr
�
Ax;Ay

�
(10)

where N is the number of samples in signals x(t) and y(t); μAx and σAx
refer to the average and standard deviation of Ax over time, respectively.

Linear mixing between two signals x(t) and y(t) also affects the cor-
relation between their amplitude envelopes. To exclude mixing-caused
amplitude correlations, two approaches where the signals are orthogo-
nalized prior to the calculation of CC have been proposed (Brookes et al.,
2012; Hipp et al., 2012). This orthogonalization removes all linear
contribution from signal x(t) to signal y(t), or vice versa, provided that
the signals are Gaussian—residual zero-lag mixing may remain for
non-Gaussian signals (Brookes et al., 2014). In the time domain,
orthogonalization of signal y with respect to signal x is achieved as
follows:

y?ðtÞ ¼ yðtÞ � xðtÞ
xþy
�

(11)

where xþ is the pseudoinverse of the vector x (Brookes et al., 2012).
Alternatively, orthogonalization can be performed in frequency

domain as follows (Hipp et al., 2012):

Y?ðωÞ ¼ im

 
YðωÞ XðωÞ

*

jXðωÞj

!
(12)
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where * denotes complex conjugation.
The orthogonalized CC (oCC) is then computed as CC, but using

orthogonalized amplitude envelopes,

oCC ¼ �corr�Ax;Ay?
�þ corr

�
Ay;Ax?

���
2 (13)

Because this seed-based orthogonalization can be performed in two
directions, either to obtain y?(t) orthogonalized in relation to x(t), or to
obtain x?(t) orthogonalized in relation to y(t), the final oCC is defined as
the average of the two correlation coefficients. Such orthogonalization
works, however, only under the assumption of data being normally
distributed, which might not be accurate for the typically heavy-tailed
oscillation amplitude distributions. It should also be noted that more
sophisticated approaches for estimating amplitude-amplitude correla-
tions, which simultaneously orthogonalize all the time series and greatly
reduce ghost connections, have been introduced recently (Colclough
et al., 2015; O'Neill et al., 2015).

In addition to iPLV, we also estimated the weighted phase lag index
(wPLI) where the sign of the phase difference between two signals is
weighted by the magnitude of the imaginary component of the cross-
spectrum (Vinck et al., 2011),

wPLI ¼
��E
im�Pxy

����
E

��im�Pxy

���� ¼
��E
��im�Pxy

���sign�im�Pxy

�����
E

��im�Pxy

���� (14)

Where E{} is the expected value, im() is the imaginary part of a complex
value, Pxy is the cross-spectrum, Pxy ¼ xðtÞy*ðtÞ, x and y are complex
signals, and * denotes the complex conjugate.

Simulations using realistic anatomical information and sensor topology

In addition to the synthetic simulations on the 2-dimensional ‘source’
grid, we investigated the effect of spurious synchrony in more realistic
MEG/EEG settings. To this end, we simulated two correlated cortical
parcels (left and right visual cortex) in a realistic anatomy and mea-
surement geometry, and so that all other cortical parcels were given
uncorrelated time series with equal amplitude distributions. The example
parcels thus differed from others only by their correlation. We then
performed a virtual MEG/EEG experiment by forward-modeling simu-
lated source activity, followed by minimum-norm source reconstruction.
Subsequently, we estimated all-to-all cortical interactions using the
metrics outlined below.

Cortical reconstruction and parcellation
Volumetric segmentation of individual MRI images, reconstruction of

anatomical surfaces, and cortical parcellation with Destrieux parcellation
((Dale et al., 1999; Fischl et al., 1999, 2002)) were carried out with
FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). The resulting parcel-
lation contained 148 parcels covering the entire cortex. The largest
parcels were iteratively selected and further partitioned until a total 400
parcels of equal size was obtained, see (Palva et al., 2010) for details.

Forward modeling
A realistic forward model was based on MRI data from one healthy

subject (male, 32 years of age). T1-weighted anatomical MRI scans of
were obtained at a resolution of 1� 1� 1mm with a 1.5-T MRI scanner
(Siemens, Germany). MNE-suite (http://www.nmr.mgh.harvard.edu/
martinos/userInfo/data/sofMNE.php) was used to build a source model
with 8 196 current dipoles distributed evenly on the surface of the white
matter and oriented normally to the local cortical surface. Also, a 3-layer
MEG and EEG volume conduction model was created, which was used
with the source model to construct the gain matrix G, using the linear
collocation boundary-element method (BEM), as implemented in MNE-
Suite. MEG and EEG sensor positions with respect to the head were
taken from a concurrent MEG/EEG recording session (Palva et al., 2010).
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Inverse modeling
We used L2 minimum-norm estimation, as implemented in MNE Suite

Matlab toolbox, to obtain a distributed cortical current estimate from the
simulated sensor-level data. The inverse operator matrix M was
computed as M¼ RGT(GRGT þ λ2C)�1, where regularization parameter
λ2¼ 0.1. The noise covariance matrix C was computed from empty-room
noise for the MEG part; for the EEG part, an identity matrix was used (see
for details, see (Palva et al., 2011)). The source covariance matrix R was
set to an identity matrix.

Simulated cortical sources
We first simulated independent time series of 50,000 samples for each

cortical parcel. We next simulated a ground truth interaction as corre-
lation between two visual areas (Eqs. (1)–(4); see Fig. 6 for their
anatomical locations). We then simulated EEG/MEG sensor data by
forward-modeling these parcel time series to acquire sensor time series.
Sensor time series were subsequently inverse-modeled to acquire
reconstructed 8 196 source time series, which was in turn collapsed into
400 parcels using a sparsely weighted collapse operator for optimal
modeling accuracy (Korhonen et al., 2014). Finally, we estimated
all-to-all connectivity with oCC, iPLV and wPLI. For oCC estimation, we
simulated coupling with cA¼ 0.9, cΘ¼ 0; for iPLV and wPLI estimation,
we simulated coupling with cA¼ 0, cΘ¼ 0.9 and a phase difference of
ϕxy¼ π/2.

The cortical spread of spurious correlations is determined by the
cross-talk function (CTF), which describes how other sources influence
the reconstructed time series of a source of interest. The CTF is obtained
for the n-th cortical source as the n-th row of the product of the inverse
and forward solutions, CTF(n) ¼ (MG)n (Hauk et al., 2011), which we
denoted as parcel-to-parcel PLV0 (Fig. 6).

Results

To illustrate the concepts of artificial and spurious correlations, we
examine how variable linear signal mixing affects measures of phase and
amplitude correlations under variable strengths of true phase and
amplitude correlations. We aim here (1) to illustrate that spurious cor-
relations which arise from linear mixing will be detected by interaction
metrics supposed to be insensitive to linear-mixing, and (2) to charac-
terize how the interpretation of phase and amplitude correlation mea-
sures is confounded by the interaction between linear mixing and the
phase of true interactions.

Phase-locking value yields false positive correlations in the presence of
signal mixing

Phase-locking value (PLV) is a commonly used measure of phase
consistency between two time series (Lachaux et al., 1999). PLV, like
coherency and phase coherency in frequency domain, is sensitive to
linear mixing of source signals inMEG and EEG recordings. A well-known
example is that a single neuronal source (e.g. a cortical current dipole)
generates strong and widespread channel-to-channel correlations
(Schoffelen and J. Gross, 2009). Fig. 1A–C illustrates the effect of signal
mixing on the PLV. We first simulated two signals that were
phase-coupled with a phase lag of 54 deg (norm. phase lag of 0.3, see
Fig. 1A, m¼ 0) and quantified their phase difference distribution, which
as expected peaks at the simulated phase lag (Fig. 1B, green). Linear
mixing of these time series (mixing parameter m¼ 0.4, see Eq. (5),
Fig. 1A bottom half) has two effects on the phase difference distribution: it
becomes narrower, i.e., phase difference between x and ywas observed as
being more consistent, and the peak is shifted towards zero (Fig. 1B).
These effects are reflected in the changes in the magnitude and phase,
respectively, of complex-valued average phase difference vectors
(Fig. 1C).

Fig. 1D–G illustrate the effect of signal spread on the estimated in-
teractions, and illustrate the distinction between what we defined as

http://surfer.nmr.mgh.harvard.edu/
http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php
http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php


Fig. 1. PLV and iPLV measure the strength
of phase correlation but are biased by signal
mixing. A) Coupled (c¼ 0.4) real-valued
signals x(t) and y(t) and their phases Θx(t)
and Θy(t) in the absence (m¼ 0) and pres-
ence (m¼ 0.4) of linear mixing. B) Distri-
bution of the phase difference ϕxy with
(m¼ 0.4) and without (m¼ 0) linear mixing.
The true phase difference (φxy)¼�0.3π. C)
Vector interpretation of the distributions in
B. Left: without mixing, right: with mixing.
Increasing linear mixing biases phase dif-
ference distribution towards ϕxy¼ 0, there-
fore increasing PLV while decreasing iPLV.
D) Mixing causes false positive artificial PLV
interactions, within the mixing region even
in the absence of true correlations. Activity
of 169 uncoupled (c¼ 0) sources (black
dots) placed into a 13� 13 grid was simu-
lated and the 20 strongest PLV edges of the
two sources-of-interest (centers of the cyan
and red regions) were picked for visualiza-
tion. The cyan and red color gradients indi-
cate mixing strength. No supra-threshold
PLVs occur between sources that are not
linearly mixed. E) iPLV analysis of the same
data as in D shows that iPLV does not
discover artificial interactions. F) True phase
correlations are mirrored into false positive
spurious correlations, between different mix-
ing regions when there is a true interaction
(c¼ 0.9) between two sources-of-interest
(centers of the mixing regions). Note that
the strongest edges detected were artificial.
G) iPLV does not discover artificial in-
teractions, but it detects ghost interactions
similarly to PLV. Spurious correlations arise
because any two sources in separate mixing
regions partially retain the non-zero phase
difference of their center sources.
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artificial and ghost interactions. We simulated source reconstructed data
on a 13� 13 grid with a well-defined point-spread characteristic, as
defined in equation (7), and computed all pairwise interactions between
the reconstructed sources. The cyan and red contours in Fig. 1D–G specify
the point-spread for the two sources at the centre of these regions. The
grayscale of the edges connecting source locations reflect the estimated
interaction strength between the reconstructed signals, after signal
mixing. Prior to mixing, the activity of two of the sources (the central
nodes of the cyan and red regions in Fig. 1D–G) was coupled by non-zero
636
phase lag with a coupling strength c. Fig. 1D–E shows the estimated PLV
and iPLV when c was set to 0, i.e. no phase correlations. After source
mixing, the PLV (Fig. 1D) shows strong local artificial interactions, which
are not visible in the iPLV (Fig. 1E). These false positive, artificial con-
nections are caused directly by signal mixing and have unimodal phase
difference distributions centered around zero-lag.

Fig. 1F–G shows a simulation where a true phase correlation was
introduced between the central sources of the cyan and red regions
(c¼ 0.4). This true coupling still resulted in local artificial interactions in



Fig. 2. Measures of amplitude correlation,
CC and oCC, are corrupted by signal mixing
similarly to estimates of phase correlation.
A) Coupled (c¼ 0.4) real-valued signals x(t)
and y(t) and their amplitude envelopes Ax(t)
and Ay(t) in the absence (m¼ 0) and pres-
ence (m¼ 0.4) of linear signal mixing. The
true amplitude correlation is artificially
amplified by the linear mixing. B) Ax(t) and
Ay(t) values with and without linear mixing
for estimation of CC (left; each dot repre-
sents a sample) and Ax(t) and orthogonalized
Ay(t) values for estimation of oCC. C) CC is
biased by linear mixing similarly as PLV
(visualization and simulations as in Fig. 1 D)
D) oCC is insensitive to artificial correlations
similarly to iPLV (data as in C). E) True
correlation interaction is surrounded by
ghost edges in CC interaction. The strongest
edges detected were artificial. F) oCC
ignored the artificial correlations, as in D.
However, orthogonalization did not solve
the problem of ghost edges: oCC detects
spurious correlations similarly to CC (data as
in E).

J.M. Palva et al. NeuroImage 173 (2018) 632–643
the PLV (Fig. 1F), which were abolished in the iPLV (Fig. 1G). Impor-
tantly, apart from revealing the true interaction (green lines in 1F and
1G), many ghost interactions were present, both using PLV and iPLV as
interaction measure.

Linear-mixing insensitive phase-locking measures do not eliminate spurious
correlations

The imaginary part of the complex PLV (iPLV, Fig. 1C) also indexes
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phase consistency of the two time series but like its frequency-domain
homolog, imaginary coherency, it is insensitive to the direct effects of
linear mixing that have zero-phase-lag and are reflected in the real part of
the complex interaction metric (Nolte et al., 2004; Vinck et al., 2011).
The insensitivity of iPLV to instantaneous linear mixing is clear in the
grid-source simulation where in the absence of true phase-lagged
coupling, no significant correlations were detected (Fig. 1E). In the
presence of a true phase correlation (as in Fig. 1F), this correlation was
correctly identified by iPLV (Fig. 1G). However, like PLV, iPLV also
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discovered dense spurious correlations, i.e., ghost interactions in the vi-
cinity of the true connection. Thus, even if iPLV correctly rejects
within-region signal mixing effects, it is as sensitive to spurious corre-
lations as PLV is.

Taken together, in the presence of signal spread, any bi-variate
measure that estimates phase coupling influenced by linear mixing will
yield both artificial and spurious false positive observations, whereas
measures insensitive to instantaneous mixing do not detect the artificial
correlations but they do yield ghost interactions, i.e., the false-positive
edges surrounding true interactions (Fig. 1 G).

Correlation coefficient produces artificial and spurious amplitude
correlations

Fig. 2 demonstrates the effect of signal spread on amplitude correla-
tion measures. We simulated two amplitude-coupled signals and
computed the correlation coefficient (CC) between the signals’ amplitude
envelopes before and after signal mixing at m¼ 0.4. As expected, signal
mixing increases the similarity between amplitude envelopes (Fig. 2A)
and strengthens CC (Fig. 2B).

In the source-grid analysis, when true correlations were not present,
the mixing of random source signals produced region-constrained arti-
ficial amplitude correlations (Fig. 2C), exactly as found for PLV (see
Fig. 1D). In the same vein, a true correlation was accompanied by long-
range spurious CC between the coupled regions, in addition to the arti-
ficial correlations (Fig. 2E). Hence CC, similarly to PLV, yields both
artificial and spurious observations of amplitude correlations in the
presence of signal mixing.
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Orthogonalized correlation coefficient produces spurious amplitude
correlations

Orthogonalization, i.e., the removal of linear dependencies, of the two
real-valued signals, x(t) and y(t), before the estimation of the amplitude
envelopes and their correlation, excludes the contribution of linear
mixing to the correlation estimates (Brookes et al., 2012; Hipp et al.,
2012).

Similarly to CC, orthogonalized CC (oCC) identifies the correlation
between two coupled simulated signals. After linear mixing and
orthogonalization of signal y with respect to x, the oCC between Ay and
Ax was smaller than CC, but still greater than the oCC obtained before
mixing (Fig. 2B).

The insensitivity of oCC to artificial amplitude correlations was clear
in grid-model simulations. A mixing of random source time courses did
not lead to significant oCC between any sources (Fig. 2D). However,
when a true amplitude correlation was present, it was mirrored into
multiple FP spurious correlations in estimated oCC interaction matrix,
which are shown as widespread ghost edges in the synchrony graph
(Fig. 2F). Thus, amplitude correlations estimated with oCC share the
caveats of phase correlations identified with iPLV.
PLV and iPLV are differentially sensitive to signal mixing and phase
difference

Next we assessed the effect of linear mixing on the PLV and iPLV
estimates under different regimes of true phase coupling and phase dif-
ferences (Fig. 3). We simulated two signals x(t) and y(t) and
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parametrically varied their phase coupling (cΘ¼ 0… 1; Eqs. (3) and (4)),
phase difference (ϕxy¼�π… π) and linear mixing (m¼ 0… 0.6; Eqs. (5)
and (6)). For each combination of these parameters, we computed the
PLV and iPLV. Fig. 3A shows the effect of the amount of actual phase
coupling on the estimated PLV under various amounts of linear mixing,
keeping the phase difference fixed at 0.3 (norm. phase). Fig. 3C shows the
estimated PLV as a function of the phase difference, given a fixed amount
of actual phase coupling of 0.4. Both panels show a strong nonlinear
dependency of the coupling strength and the phase difference on the
estimated PLV, which in itself depends on the amount of linear mixing. At
low phase differences in particular, the PLV shows a positive bias, which
increases with the strength of signal mixing. This observation can be
explained by the fact that the relative contribution of the zero phase lag
linear mixing to the estimated PLV works ‘synergetically’ with the true
coupling at small phase differences, whereas it has a ‘counteracting’ ef-
fect when the phase difference of the true coupling is far away from 0.
Moreover, this effect saturates at higher values of true coupling, because
the PLV is by definition bounded to a maximum value of 1. For the same
set of simulations, Fig. 3B and D shows the iPLV. In contrast to PLV, linear
mixing reduces the estimated iPLV for all cΘ, at a fixed phase difference of
0.3π, and most strongly does so for large cΘ values (Fig. 3B). iPLV is
reduced by increasing signal mixing because the phase difference dis-
tribution shifts towards zero with increasing mixing (Fig. 1B).

Algebraically, PLV (Eq. (8)) is independent of the mean phase dif-
ference, ϕxy. Yet, in the presence of linear mixing, the estimated PLV is
dependent on ϕxy (Fig. 3C). The bias from ϕxy on the estimated PLV can
be positive or negative: it is positive for small phase differences (ϕxy< π/
2, i.e. 90 deg) because under such a regime the interaction and mixing
effects add up. Consequently, the bias is negative for near “anti-phase”
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narrow-band synchrony when ϕxy approaches �π, and x(t) and y(t) have
reverse polarities. The case is, again, very different for iPLV, which is zero
for ϕxy¼ 0 and �π, as can be seen from its definition (Eq. (9)). Between
these poles, iPLV is always negatively biased by signal mixing, regardless
of the mean phase difference (Fig. 3D).

Taken together, iPLV is not positively biased by signal mixing as PLV
is, although it has the disadvantage of failing to detect true synchroni-
zations that are near zero- or anti-phase-lag. The properties of these two
phase correlation measures lead to an interesting worst-case scenario,
where phase synchrony is accompanied by strong signal mixing and
iPLV¼ 0. Then PLV can have almost any value, depending on the actual
cΘ and whether ϕxy¼ 0 or �π.
CC and oCC are biased by signal mixing and phase effects

In our grid simulations, the behavior of CC and oCC was almost
identical to that of PLV and iPLV, respectively. We asked next if their
similarities extend to phase effects. Phase effects are not often considered
in studies of amplitude correlations, because CC and oCC are thought to
quantify the correlation between amplitude envelopes and amplitude is
independent of phase.

We first simulated two signals x(t) and y(t) and parametrically varied
their amplitude coupling (cA¼ 0 … 1; Eqs. (1) and (2)), phase difference
(ϕxy¼�π … π) and linear mixing (m¼ 0 … 0.6; Eqs. (5) and (6)). We
then computed CC and oCC for each combination of parameters. In the
absence of any concurrent phase correlations, signal mixing introduced
as expected a positive bias on the CC, in particular at low to intermediate
values of cA (Fig. 4A). The effect of signal mixing was different for oCC, in
close resemblance to what was found for iPLV (Fig. 3B): signal mixing
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drastically reduced oCC for high values of cA (Fig. 4B).
Interestingly, introduction of a true phase correlation (cΘ¼ 0.4)

resulted in a phase different dependent effect on the estimated CC and
oCC, with a variable influence of signal mixing (Fig. 4C and D).
Comparing the straight lines (representing the absence of phase
coupling) with the curves of the same colour (representing the presence
of phase coupling), signal mixing increased the estimated CC when the
phase difference ϕxy was small and reduced the estimated CC when the
signals were close to anti-phase, i.e. ϕxy¼�π (Fig. 4C). This is because
the phase correlation at small phase differences leads to an alignment of
the peaks of x(t) and y(t). Now, if Ax and Ay are in fact correlated, the
linear mixing effectively ‘amplifies’ this correlation, because high peaks
will match with high peaks more often than with low peaks (and low
peaks will match more often with low peaks than with high peaks).

For the estimated oCC, the presence of actual phase coupling affected
the estimates in a nonlinear and phase difference dependent way. This is
a result of the orthogonalization process (see Eqs. (11) and (12)), which,
before computing the amplitude correlation, implicitly either regresses
out the real valued contribution of signal x(t) to y(t) (Eq. (11)) or
explicitly only uses the imaginary component of the cross-terms between
signals x and y (after amplitude normalization for one the signals). Either
way, the real/imaginary part of a complex-valued signal mixes phase
information with amplitude information. A deviation from a uniform
distribution of phase differences across observations (i.e., the presence of
phase coupling), will affect the orthogonalization process in a non-trivial
way, despite the fact that consecutively only the amplitude terms are
used to compute the correlation. Our simulations show that phase
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correlations do indeed have an impact on oCC. In the presence of phase
correlations and linear mixing, the estimated oCC is reduced when the
mean phase difference is close to 0 (Fig. 4D). On the other hand the
estimated oCC is inflated when ϕxy is close to �π/2. These phenomena
can be understood from the properties of orthogonalization, where the
orthogonalized amplitudes of a signal are obtained by projecting the
complex-valued phase-amplitude vector onto the imaginary axis, after
rotation with the phase of the other signal. A consistent phase relation-
ship across observations (phase coupling) will amplify the estimated
correlation due to a consistent rotation of the single observation phase-
amplitude vectors towards the imaginary axis, thus increasing the
contribution of the spatially leaked amplitudes. A consistent phase
relationship of around 0 will result in a consistent absence of vector
rotation prior to imaginary axis projection, and any spatially leaked
amplitude components will be lost when taking the imaginary compo-
nent. Phrased differently, for highly similar time series, the resulting
orthogonalized signal will be almost negligible, i.e. y?(t)� 0, leading to
small envelope correlation values. On the other hand, when the phase
difference between x(t) and y(t) are mostly at �π/2, they are considered
already orthogonal and are barely affected by the orthogonalization
procedure, i.e. y?(t)� y(t), even if there are correlations induced by
signal mixing.

Hence, for a range of values of phase lags, ϕxy, the estimated ampli-
tude correlation can be significantly affected by the presence of con-
current phase coupling. To get a more complete picture of the interaction
between cA, cΘ and ϕxy, we extended these simulations for a large part of
the parameter space and for both the regression- and the imaginary-
projection-based orthogonalization methods (Supplementary Figs S1
and S2). Both methods were approximately equally affected by true
neuronal phase correlations, both in the presence and in the absence of
linear mixing. These findings thus show that oCC produces false positive
amplitude-correlation observations in the absence of any true amplitude
correlations when true phase correlations are present (see Figs S1-S2 for
cA¼ 0 and cΘ is high).

Weighted phase-lag index (wPLI) estimates of phase coupling are not biased
by mixing

The wPLI estimates the extent to which phase leads and lags between
two signals are non-equiprobable, and it weighs the observations by the
magnitude of the imaginary component of the cross-spectrum (Vinck
et al., 2011). Unlike what was observed with iPLV, linear mixing does not
affect the wPLI estimates across the tested range of coupling strengths
(Fig. 5A) or over different phase differences of a true correlation, cΘ¼ 0.4
(Fig. 5B). Taken together, wPLI estimates are not affected by mixing as
iPLV estimates are, but are still compromised in overall utility by the
phase-difference dependence of the metric value and its inability to
detect true near zero- or anti-phase-lag phase synchronizations. More-
over, wPLI is only insensitive to mixing for not more than two sources.

All linear-mixing insensitive interaction metrics produce wide-spread
spurious synchrony in a realistic simulations

To demonstrate the effect of spurious synchrony in real MEG/EEG
settings, we performed a simulation using a realistic model based on
individual MR images and a real MEG/EEG measurement geometry. We
simulated independent time series across the whole cortex except for two
highly correlated sources located in left and right visual areas. After a
virtual MEG/EEG experiment, i.e., forward- and inverse-modeling of the
simulated time series, we estimated all-to-all connectivity and visualized
the extent of spurious phase correlations in synchrony graphs displayed
together with the magnitude of cross talk on a flattened cortical maps.
(right column, Fig. 6). All tested interaction metrics, iPLV, wPLI, and oCC
yielded significant amounts of ghost connections (grey) around the true
connection (black) among parcels of which the signals were mixed with
those of the two truly connected parcels. Cross talk was measured here



Fig. 6. Left: Illustration of the mixing effect, quantified with parcel-to-parcel PLV0, simulated parcel time series data on a 3D model of brain of one subject. The colour
gradient on the flattened cortical map indicates the intensity of mixing from the simulated parcels. Red: mixing of left occipital pole (Opole). Cyan: right Opole. Right:
amplitude and phase coupling were simulated between left and right Opole while the rest cortical parcels time series was uncorrelated. Simulated time series were
forward- and inverse-modeled and estimated with oCC, iPLV and wPLI. The strongest 60 edges were overlaid on flattened cortical map. oCC graph (Brookes, 2012) was
computed using time series that was simulated with cA¼ 0.9, cΘ¼ 0. iPLV and wPLI graphs were computed using time series that were simulated with cA¼ 0,
cΘ¼ 0.9, nφxy¼�0.5.
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among all parcels by PLV estimates of forward- and inverse-modeled
filtered noise parcel signals. To provide another example with more
distant true sources than the two visual ones, we performed a similar
analysis where a true interaction was simulated between middle frontal
gyrus and inferior parietal gyrus (Fig. S3A). This analysis revealed a
qualitatively identical result with ghost connections surrounding the true
connection. These realistic simulations thus show that ghost connectivity
is a tangible problem in MEG source space connectivity analyses and
involves significant distances across the cortical surface. Importantly, the
problem cannot be alleviated by picking a coarse parcellation resolution
as adjacent parcels will express mixing in any case. To illustrate this, we
displayed the parcel-parcel crosstalk of a parietal and frontal parcel with
their surroundings for the Desikan-Killiany atlas (68 parcels), the Des-
trieux atlas and its subdivisions (148, 200, 400 parcels), and the source
dipoles per se of the cortical source model (6 400 sources, Fig. S3B).
Significant mixing of similar spatial extent was visible at all resolutions.

Discussion

In recent years, connectivity measures that ignore zero-phase-lag in-
teractions have been developed to protect interaction estimates against
inflation and false positive findings by linear mixing of the underlying
signals, which is an unavoidable phenomenon in MEG and EEG research.
In this study, we question the often written claim that, in the presence of
true interactions, such coupling measures (such as iPLV, wPLI and oCC)
would be de facto immune to false positive detections. Although these
measures can be overly conservative by missing true near-zero-phase
interactions, we show here that they also yield false positive in-
teractions due to signal spread. This is because field spread in the vicinity
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of a true non-zero phase interaction gives rise to spurious “ghost” in-
teractions, that appear as false positives with any bivariate interaction
measures. Moreover, indicating further interpretational challenges, our
simulations showed that orthogonalized amplitude correlation co-
efficients are not independent of concurrent phase coupling. In fact, they
are non-trivially affected by the presence of true phase coupling and
linear mixing in a phase-difference dependent manner and may yield
both false positive and negative findings.

Our simulations illustrate the expected effect of volume conduction or
field spread on standard measures of amplitude-amplitude and phase-
phase coupling: in the presence of linear mixing, CC and PLV estimates
yield artificially inflated coupling estimates for sources with a true
interaction. Notably, this phenomenon leads to purely artificial coupling
even when two source time series are uncorrelated. Our simulations also
corroborated earlier studies by showing that modified versions of these
measures that are insensitive to instantaneous coupling (i.e., oCC and
iPLV/wPLI) detected no coupling in the absence of a true interactions
despite of the presence of signal spread. However, in the presence of a
true interaction, signal spread produces ghost interactions among un-
correlated sources in the vicinity of the truly interacting sources.

Furthermore, we show that signal spread affects different interaction
estimates in different ways. Notably, the presence of linear mixing leads
to an inflation of the estimated PLV and CC, but to an underestimation of
true coupling when using iPLV or oCC. This is an important observation
as it challenges the widely supported claim that the interpretation of
artificial-interaction insensitive coupling measures are not affected by
linear mixing, although wPLI constitutes an important exception from
this.

Moreover, we show that impact of signal mixing on both PLV and iPLV
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estimates is dependent on the phase difference of the true coupling.
Hence changes in phase differences in the absence of changes in coupling
strength between contrasted conditions would appear as false positive
changes in coupling strength in a signal-mixing dependent manner.
Moreover, while wPLI is independent of signal mixing here, it is still very
dependent on the phase difference and would thus be similarly
confounded.

As a major methodological finding, we observed that phase coupling
and its phase difference influenced also the CC and oCC estimates of
amplitude correlations among oscillations. These latter results indicate
that phase coupling among the signals can impact the estimation of
amplitude coupling, and this effect is amplified with increasing amounts
of linear mixing. This poses serious limitations on distinguishing pure
phase-from pure amplitude-coupling phenomena, and more generally
limits the interpretability of such measures in isolation.

In summary, our simulations, including realistic MEG/EEG configu-
ration, illustrate two main problems that need to be acknowledged to
avoid false interpretations of connectivity analyses. First, we show that
using measures that do not detect zero-phase coupling is by no means a
guarantee against false positives. As acknowledged, these measures are
indeed not affected by artificial coupling caused by linear mixing, but
they are still prone to detecting ghost connections, i.e., false-positive
interactions that arise in the vicinity of true interactions. These “2nd
order false positives” are caused by the unavoidable cross-talk between
the source estimates that is preserved at all resolutions of source par-
cellations. It is important to note that the spatial structure in the cross-
talk function is generally not smooth as a function of distance to the
source of interest. As a consequence, ghost interactions may arise in
discontinuous patterns at locations further away from the primarily
interacting sources. The exact form of the cross-talk function is also a
property of a specific inverse solution, but it universally leads to linear
mixing among numbers of sources and thus the problem ofghost in-
teractions is qualitatively identical to all source reconstruction ap-
proaches. Second, by showing the effects of phase correlations on
amplitude correlation measures with varying amounts of linear mixing,
we demonstrated the limitations on the separability of phase and
amplitude interactions. In a worst-case scenario, for instance, linear
mixing and strong phase coupling at around π/2 phase lag will lead to
large values of the estimated oCC in complete absence of true amplitude
correlations. This represents an extreme case of false positives that this
measure can produce. Conversely, through the effect of signal-to-noise
ratio on the accuracy of phase estimates, also phase correlations can be
affected by amplitude dynamics and correlations (Palva et al., 2010).

We consider the above limitations to be of major importance to the
EEG and MEG field. Our results confirm the added value of recently
proposed coupling measures which focus on the non-zero phase in-
teractions. However, they also reveal a number of limitations that have
been either underrated or simply hardly taken into consideration. Most
importantly, the red flag raised here based on simulations is valid for real
data situations. The behavior of the coupling estimators was investigated
by modulating all principal parameters that affect the measures used.
Although we did not test the effect of additive noise, our main findings
are expected to remain identical in the presence of noise. In addition, the
reported limitations hold for both spontaneous and evoked data, with
and without a contrast condition comparison. Moreover, all forms of
cross-frequency or other non-linear couplings, albeit immune to the
artificial interaction effect per se, will also equally suffer from the ghost
coupling effect.

Since the main limitation of the oCC and iPLVmethods shown here is
that these measures also yield ghost connections, mostly in the vicinity of
the true connections, one might argue that the problem could probably
be addressed by local selection of the edges with the highest coupling
strength, using a clustering approach, or accept and exploit their pres-
ence by spatially non-homogeneous smoothing (Schoffelen and J. Gross,
2011). With respect to the local selection of the strongest edge, it should
be noted that the strongest or statistically most significant interactions
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will not necessarily correspond to the true interaction. A simple theo-
retical example would be a situation where there are two pairs of truly
(and similarly) interacting sources. Source estimates at locations in be-
tween the individual nodes of each interacting source pair will be
affected by cross-talk from the interacting nodes, which leads to ghost
connections, of which the amplitude and statistical robustness may
exceed that of the true interactions around it. Generally speaking, there is
no guarantee that true interactions will exhibit a greater coupling
strength or display higher statistical significance than ghost connections.

For this account to be forward-thinking and constructive, it is
important to explore potential recommendations and suggestions that
arise from our observations. The first recommendation is that one should
understand and acknowledge the limitations of the source reconstruction
and coupling method used when reporting the MEG/EEG connectivity
results. Claims about ruling out false positives using methods insensitive
to instantaneous coupling should be avoided. Likewise, it is essential to
move from analyses limited to a few regions-of-interest into full source-
space interaction mapping to avoid neuroanatomical misinterpretations
of the coupled sources. Restriction to a seed-based approach might imply
that one might focus interpretations on a detected interaction, but will
fail to notice potential coupling that exists in its vicinity or mistake a
ghost interaction for a true one. Neighboring connections might in theory
contain the true interacting pair of sources while the one revealed in a
seed-based approach could simply be a ghost of the real interaction.
Additionally, a general recommendation would be to also explore phase
coupling even when the main interest lies in assessing amplitude
coupling. We have shown that if strong phase correlation is present,
linear mixing can lead to erroneous amplitude correlation estimations.
Systematically assessing phase and amplitude coupling might therefore
be very helpful when interpreting the findings.

Ultimately, finding the ideal measure to characterize interactions
using MEG or EEG is limited by our knowledge of the true mechanisms of
neuronal interactions. The best we can do is to estimate brain in-
teractions with one or several methods for which we have a thorough
understanding of the strengths and drawbacks. The limitations of the
connectivity measures we choose to use need to be explicitly acknowl-
edged and potential implications on the interpretation of the data need to
be discussed. There are also new analysis possibilities, such as using
multivariate correction (Brookes et al., 2014; Colclough et al., 2015; Soto
et al., 2016) and hyper-edge bundling (Wang et al., 2018) approaches,
that alleviate the problem of ghost interactions but each with their lim-
itations. Beyond sounding the alarm, the current study intends to help
improve good practice in MEG & EEG source connectivity analyses by
outlining potential interpretational pitfalls and promoting some stan-
dards of good practice.
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