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In-vivo corneal confocal microscopy is a powerful imaging technique which provides clin-

icians and researcher with the capabilities to observe microstructures at the ocular surfaces

in significant detail. In this Mini Review, the optics and image analysis methods with the use

of corneal confocal microscopy are discussed. While novel insights of neuroanatomy and

biology of the eyes, particularly the ocular surface, have been provided by corneal confocal

microscopy, some debatable elements observed using this technique remain and these are

explored in this Mini Review. Potential improvements in imaging methodology and instru-

mentation are also suggested.

The ocular surface is richly innervated with sensory nerves, particularly at the cornea which
is a clear dome-like tissue forming the frontmost part of the eye. In-vivo corneal confocal
microscopy is a technique which is capable of imaging corneal microstructures at different

depths of the tissue. Together with immunohistochemical techniques, it has provided insight
into biological functions of different neuronal and immunological constituents of the cornea.
The sub-basal nerve plexus has garnered substantial interest as it is the densest and most
homogenous of the several nerve plexi in the cornea, situated between the basal epithelial layer
and Bowman’s layer1. Corneal confocal microscopy has provided an opportunity to image
corneal microstructures non-invasively and monitor how these change overtime with exposure
to various stimuli. This Mini Review summarises current iterations of corneal confocal micro-
scopy instrumentation with particular focus on laser scanning confocal microscopy which is the
most widely used form. In addition to the optics of confocal microscopy and image analysis, this
Mini Review also explores the anatomical, neurobiological and immunological insights afforded
by corneal confocal microscopy as well as the pervasive gaps in our knowledge. Limitations and
future directions in the advancement of the corneal confocal microscopy technique will also be
explored (Box 1).

Emergence and optics of confocal microscopy. Ocular imaging techniques have advanced and
improved over the past few decades, with in-vivo confocal microscopy emerging as a potential
diagnostic technique for ocular surface diseases due to its ability to observe ocular surface
microstructures in a non-invasive and rapid manner. This imaging technique is based on the
principle of confocal microscopy first described in 19552. Compared to conventional light
microscopy, confocal microscopy produces images with higher resolution and better out-of-
focus information rejection. It is also able to capture images of cellular layers from various
depths within a thick tissue specimen using its optical sectioning capability and hence, is well
suited for the investigation of intact tissue in living organisms.

The optical sectioning property of the confocal microscope makes it possible to store a
three-dimensional data set of intensity values of thick objects by using a point source and a
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point detector in the illumination and detection paths,
respectively3. The sample is illuminated using a diffraction-
limited focused laser spot and the reflected or transmitted light
is detected by a point-like detector (Fig. 1). When light comes
from the focal region of a specimen, it is focussed onto a point
detector (Fig. 1a) and hence produces a strong signal. However,
light which comes from a region away from the focal plane (say
z1) is defocused at the pinhole (Fig. 1b) and therefore produces
a much weaker signal. In terms of the resolution of the image, a
narrower axial response width implies a higher axial resolution.
In other words, the narrower the peak in the V(z) profile, the
better the system is at distinguishing between objects located at
different axial positions (Fig. 1c). This unique system con-
tributes to the powerful imaging capabilities of the in-vivo
corneal confocal microscope in producing images of high
resolution and magnification.

Confocal imaging of the ocular surface. There are three types of
commercially available in-vivo confocal microscopy developed for
assessing the ocular surface: the Tandem Scanning Confocal
Microscope (Tandem Scanning Corp, Virginia, USA), the Con-
foscan 4 (Nidek Technologies Srl, Padova, Italy), and the Hei-
delberg Retinal Tomograph with Rostock Corneal Module (HRT-
RCM, Heidelberg Engineering, GmBH, Dossenheim, Germany).
These microscopes differ from one another in terms of the
intensity of the light source, magnification, image contrast, and
image resolution. However, the HRT-RCM which uses a laser
scanning confocal microscope provides higher resolution and
magnification compared to earlier corneal confocal microscopy
models4, and is currently more widely used by clinicians and
researchers worldwide.

While confocal microscopy is capable of imaging various
regions of the ocular surface, it has been more widely used to

Box 1 | Current applications and potential future improvements of the corneal confocal microsocpy technique

Most established current applications ∙ Clinical settings: Aiding in the diagnosis of ocular surface diseases, particularly in identifying the causative
pathogen in infectious keratitis such as fungal63 or acanthamoeba keratitis90

∙ Clinical research settings: Potential use as a clinical diagnostic tool in identifying patients with peripheral
neuropathy due to a range of aetiologies, particularly diabetes70,71

Potential improvements ∙ Artificial intelligence (AI) in the analysis of features identified in corneal confocal microscopy images,
especially the sub-basal nerve plexus
∙ Enhancing the user friendliness of the instrument or technique (e.g. precise localisation or eye tracking
capabilities, wider field of imaging, non-contact procedures)

Fig. 1 Principle of confocal microscopy. Schematic diagram of a confocal microscope illustrates the optical section property (a) when the sample is placed
at the correct image distance (z), the reflected light is focussed on to the point detector, and (b) when the sample lies at some other image distance (z1),
the reflected light focuses above or below the plane of the point of detection. c The V(z) profile represents the axial resolution of a confocal system. A
narrower axial response width indicates a higher axial resolution.
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characterise features of the cornea. Corneal epithelial cells,
stromal keratocytes and endothelial cells can be imaged at high
resolution which enable assessment of their integrity and shape.
Cell densities, including resident immune cells, can also be
monitored using corneal confocal microscopy5,6.

Nerve fibres innervating the cornea form several plexi within
anterior layers of the cornea, from the stroma to the epithelium.
As the sub-basal nerve plexus is the densest and most
homogenous of these nerve plexi, it has been widely studied
particularly in ocular surface diseases. Currently, quantifying
parameters such as corneal nerve fibre length or density are
normally conducted using software which could include manual
tracing or methods such as CCMetrics7, and semi-automated
tracing such as NeuronJ, a plugin in ImageJ (National Institutes
of Health, Maryland, USA). Automated procedures have also
been proposed to substantially reduce the time needed to analyse
corneal nerve parameters, although studies have shown that
conventional automated procedures may underestimate these
parameters compared to manual or semi-automated
procedures8,9. The following section outlines further advance-
ments in the analysis of corneal nerve parameters particularly
with artificial intelligence (AI).

Image analysis. Advances in AI have encouraged clinical neu-
roscience towards more objective systems for quantifying corneal
nerve morphology from corneal confocal microscopy
images10–12. Automation provides clinicians with diagnostic
leverage for inferring disease from measurable image structure
using computational models developed in software. Two of the
most popular geometric attributes that have been modelled using
AI previously include nerve density or length and tortuosity of
the sub-basal nerve plexus.

Nerve density is commonly defined as the standardised
distribution of nerve fibres over a finite area of image space in
mm/mm2 or the ‘sum of the nerve branches observed within a
frame’13. Models that automatically estimate nerve density
require images of corneal nerve fibres to be fully segmented.
Any model fragmentation generated by false negatives would lead
to underestimates of nerve density.

Scarpa et al.12 used simple convolutional Gabor kernel filters in
conjunction with image equalisation to enhance the nerve
contours in corneal confocal microscopy images to improve
nerve segmentation. They found the estimates of segmented nerve
length from their model were correlated with the lengths of
subjectively identified nerve contours, accounting for around 74%
to 88% of subjective judgments of nerve length. Another recent
approach used a multiscale dual-model approach that applied
even-symmetric Gabor filters to the image in one step to then
enhance contours and a background noise reduction operation in
an alternate step14. Even symmetric Gabor filters model the
behaviour of simple cells found in the primary visual cortex and
thus model subjective gradings of corneal nerves. The success of
this approach has been improved with the support of artificial
neural networks15 and has been leveraged upon by end-user
software packages like ACCMetrics16.

Kim and Markoulli17 devised a ‘structure enhancement’ model
based on multiscale spatial Gabor filters and operations to
eliminate vignetting of corneal confocal microscopy images.
Although this approach is simple and principled in modelling
human visual detection of image contours, it does not outperform
ACCMetrics17. However, another recent proposal used U-Net
convolutional neural networks to perform corneal nerve segmen-
tation from corneal confocal microscopy images18. The sensitivity
of their model performed at the level expected of human
subjective graders, which has proved useful for segmenting

corneal nerve contours in corneal confocal microscopy images to
estimate nerve density. While deep learning algorithms continue
to evolve and be developed to enhance nerve segmentation and
evaluation, most are limited to research settings and require
further validation before implementation in clinical practice19,20.
A software using a customised deep learning-based approach
known as deepNerve has recently been developed and used for
animal and clinical human studies21,22, demonstrating the
promising potential of artificial intelligence in this area.

In comparison to nerve density, nerve tortuosity is not as well
defined. Oliveira‐Soto and Efron13 proposed a grading system
whereby a score of zero indicates nerve contours appear straight
and a score of four indicates nerve contours frequently and
largely change orientation across their length. A potential
limitation of this definition is there is no clear guide on what
an extreme example of tortuosity should look like and how
intermediate levels perceptually scale. However, the advent of
machine learning provides the ability to ‘inversely’ determine the
image-based parameters that predict human observer gradings.

Using a generative model design, ref. 10 proposed a reliable
automated model of tortuosity that was motivated by the need to
account for the overall magnitude of changes in nerve orientation
across the image and number of local ‘twists’—denoted by the
number of inflection points along a segmented nerve fibre’s
length. An alternative approach used Multinomial logistic ordinal
regression to show that mean curvature at two different spatial
scales was diagnostic of human subjective tortuosity gradings23.
However, a more recent study by ref. 24 proposed that nerve
tortuosity was best quantified directly using U-Net segmentation
to assess adjacent angular detection of nerve contour orientations
(USAAD). This model first obtains a local-scale index of
tortuosity by determining the straight-line contours that connect
every adjacent pair of nerve pixels segmented using the earlier-
described U-Net segmentation algorithm. Reducing the number
of key points allows the model to assess tortuosity over longer
spatial ranges. This model was found to generate outstanding
performance in accounting for subjective ratings. Evidence also
suggested that subjective ratings of tortuosity is computed across
multiple scales spanning the full range of nerve lengths available.
Could this mean that tortuosity estimates are weighted towards
longer nerves when they are visible? Consistent with this view, a
simple model that weighted tortuosity estimates based on nerve
fibre length was found to exhibit sound correspondence with
human judgements of tortuosity and provided diagnostic leverage
in the prediction of diabetes11.

In summary, there appears to be great benefit achieved thus far
through image analysis techniques developed in previous
literature. One potential limitation of these approaches is that
ground truth is consistently referenced to subjective gradings
made by human observers. However, this may not be a limitation
as the end goal of AI is to optimally assist clinicians with their
diagnostic and monitoring responsibilities, but not replace them.

Neurobiological and immunological insights. Neural and
immunological features are the two main components investi-
gated using corneal confocal microscopy. As mentioned, the sub-
basal nerve plexus is the one of the most studied part of the
cornea given its uniform and dense nerve fibre distribution1. Both
corneal confocal microscopy and immunohistochemical techni-
ques have demonstrated distinct morphological patterns in this
plexus, with some of the earlier montaged corneal confocal
microscopy images showing nerve fibres converging towards a
clockwise or anti-clockwise spiral25. This region has been termed
the inferior whorl which is situated about 1–2 mm inferonasal
from the anatomical centre of the cornea. While various theories
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have been suggested for the spiral pattern of the sub-basal nerve
plexus, recent studies have shown that interactions with corneal
epithelial cells also migrating from limbal regions have substantial
impact on dictating the course of nerve fibre migration26,27.
Specifically, axon guidance ligands have been found on corneal
epithelial cells including Semaphorins, Ephrins and Netrins28.
Various studies have also indicated the potential for the inferior
whorl to act as a landmark for monitoring neuronal changes
particularly in peripheral neuropathic conditions29,30. However,
there has been evidence of deviations from this spiral pattern
associated with advancing age31 or neuronal damage32 which
may confound identification of the inferior whorl region. While
laser scanning confocal microscopy can provide substantial detail
of corneal microstructures in high resolution and magnification,
one of its limitations is the small field of view associated with each
image frame which constitutes an area of 0.16 mm2. In relation to
quantitative sub-basal nerve plexus outcomes including corneal
nerve parameters and dendritic cell density, various studies have
shown that random sampling of a selected number of images
(usually 8 or more) from a total pool collected from areas of
interest of the cornea may be sufficient in optimising reprodu-
cibility and accuracy of measures32–34. Widefield imaging cap-
abilities could further facilitate analysis of nerve migration35,36

and monitor neuronal morphological changes in the sub-basal
nerve plexus.

Certain resident immune cells can also be imaged within the
cornea through corneal confocal microscopy. This has been
supported by earlier findings which identified the presence of
bone marrow-derived CD11c+ dendritic cells which are potent
antigen presenting cells located mainly within the epithelial and
anterior stromal layer of the cornea, as well as macrophages in the
stroma37. Plasmacytoid dendritic cells, a subpopulation of bone
marrow-derived dendritic cells, have also been shown to be
present particularly in the peripheral regions with pivotal roles in
inducing immune tolerance38 or wound healing39. While corneal
confocal microscopy lacks the capability of providing functional
characterisation of immune cells, researchers have used its high
resolution and magnification to analyse morphological properties
particularly with dendritic cells. Generally, dendritic cells with
larger size and/or more dendrites are characterised as activated or
mature40,41, indicating a more inflamed state in the cornea.

The biological interconnectedness between both eyes can also
be demonstrated through the cornea. Recent studies using corneal
confocal microscopy to investigate corneal infections including
herpetic keratitis or cataract surgery in one eye have shown
bilateral reduction in corneal nerves in both eyes42–44.
Experimentally-induced corneal nerve cut or injury to one eye
in animal studies have also affected corneal nerve function45 and
increased CD11c+ or CD11b+ dendritic cells expressing co-
stimulatory molecules in the unaffected eye46. Such interdepen-
dence between the two ocular surfaces may partly be due to a
neurogenic inflammatory reflex mediated by activation of the
transient receptor potential vanilloid 1 channel involved in
nociceptive signalling and subsequent substance P release47. A
corneal-trigeminal axis involving upregulation proinflammatory
cytokines, substance P and infiltration of immune cells may also
contribute to the propagation of inflammation from the affected
corneal surface to bilateral trigeminal ganglia48.

Prevailing uncertainties in the identification of corneal
microstructures. While corneal confocal microscopy has pro-
vided substantial information of anatomical structures and bio-
logical function in the cornea, certain gaps in knowledge remains
pervasive. corneal confocal microscopy has been used to monitor
corneal nerve recovery following therapeutic or surgical

interventions in various ocular surface diseases49,50, but it is also
thought to be able to detect signs of aberrant regeneration.
Microneuromas are another neuronal feature that has been
identified with corneal confocal microscopy and commonly
described as terminal enlargements of a corneal nerve51,52. It is
thought that these enlargements are associated with aberrant
nerve regeneration and neuropathic pain following injury to the
corneal nerve53. While severed nerves have historically demon-
strated these abnormal neuronal growths54, recent studies have
shown that some features previously identified as microneuromas
with corneal confocal microscopy could potentially be corneal
nerve stromal-epithelial nerve penetration sites55. The latter could
be characterised as being diffuse hyperreflective sites as supported
by immunohistochemical findings showing continuation between
the sub-basal corneal nerve and underlying originating stromal
nerve55. Emerging evidence from murine models demonstrated
that the presence of these penetration sites may be elevated with
metabolic stress or dysfunction56. However, standardisation in
the identification of these neuronal features is still required.

Hyperreflective round cells have also been identified amongst
the sub-basal nerve plexus particularly at the inferior whorl
region. As their size and hyperreflectivity seem to reflect those of
dendritic cells, they are considered to be a subtype of immune
cells which lack dendrites. These cells have been given different
labels including globular cells57, dot-like features31 or round-
shaped immune cells58. The evidence for the true nature and
biological significance of these cells remain limited with little
knowledge of immunohistochemical correlates. However, CD86+

round-shaped dendritic cells closely associated with sub-basal
nerve fibre branching points have been observed by ref. 59. These
cells penetrate the basement membrane into the stroma and may
play a role in guiding nerve movement or trajectory59. Whether
these cells represent those observed in corneal confocal micro-
scopy remain unknown.

Cells with dendritiform morphology are often labelled as
dendritic cells in studies using corneal confocal microscopy. A
recent study identified the presence of resident CD8+ memory
T-cells in constant motility following a resolution of local
infection which also demonstrated dendritic morphology using
immunostaining techniques60. Highly motile dendritiform cells
were also observed with corneal confocal microscopy in humans
by constructing single images of the same area imaged by corneal
confocal microscopy in a time series60. These are reminiscent of
‘immature’ dendritic cells labelled in previous studies61,62,
however whether corneal confocal microscopy can distinguish
these immune cell types based on morphology alone requires
further investigation. It is evident that more widefield in-vivo
corneal imaging techniques which can also localise corneal nerve
regions to be imaged could facilitate more thorough comparisons
and precise monitoring of these corneal microfeatures.

Current clinical and research applications. In specialty clinics
for corneal disease, corneal confocal microscopy has demon-
strated high discriminative ability in distinguishing infectious
keratitis of various aetiologies. It is particularly useful in cases
with atypical clinical presentations where differentiation is more
difficult such as the visualisation of fungal filaments and acan-
thamoeba trophozoites or cysts to confirm an uncertain
diagnosis63–66. Recent findings in corneal confocal microscopy
have also been associated with systemic biological health such as
higher corneal nerve parameters with higher serum levels of
omega-3 polyunsaturated fatty acids particularly docosahexanoic
acid67 and associations between reduced corneal nerve para-
meters in Alzheimer’s disease or transgenic mice overexpressing
human non-mutated tau68. Corneal confocal microscopy has
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mostly been studied in the context of diabetes, which is one of the
most common causes of peripheral nerve injury in the distal
extremities particularly the feet69. Its utility in diagnosing and
predicting the development of diabetic peripheral neuropathy has
been demonstrated in previous studies70–72 (Fig. 2). Loss of
corneal nerves and increase in corneal dendritic cells were found
to be more prominent in affected patients73,74. Similar changes
have been observed in ocular surface conditions particularly in
dry eye disease75 which is known to have elements of neurological
and inflammatory dysfunction76.

Future outlook. Several improvements could be made to enhance
imaging capabilities of the corneal confocal microscopy, a few of
which have been discussed in previous sections of this Mini
Review. The most commonly used methodology in clinical
research settings involves random selection of a set number of
images with sufficient quality from a pool of images obtained
from a participant’s eye prior to analysis33,34. Sampling strategy
of adequate images has been shown to produce sufficient accu-
racy, however for longitudinal or clinical monitoring purposes,
real-time widefield imaging capabilities may provide more insight
into regional changes in the cornea over time or following
exposure to various stimuli77,78. In fact, a minimum repeatable
area of 1.5 mm2 is shown to have reliable morphological char-
acterisation of the sub-basal nerve plexus79,80.

Precise and repeatable localisation technology built into corneal
confocal microscopy instrumentation, akin to those available in
optical coherence tomography (OCT) to facilitate follow-up
assessments of the posterior pole, is yet to be devised for routine
clinical use. More recently, OCT technology with real-time eye
tracking has been adapted to provide non-contact visualisation of
corneal nerves81, as well as other ocular surface structures in a
larger field of view including tear film patterns, limbal crypts and
conjunctival vasculature82,83. However, these techniques are yet to
be adopted for widespread use and the inherent curvature and
clarity of the cornea continue to present a challenge in widefield
imaging. Volumetric scans may also shed more light on

3-dimensional structures particularly in terms of the physical
interactions between neuronal, epithelial and immune elements.
This may further inform the concept of peripheral epineuroim-
mune interactome which characterises the biological interdepen-
dence of these microstructures essential for the maintenance of
health84. In order to enhance patient- and clinician-friendliness,
non-contact procedures would also be desirable to prevent
deterrence of patients who may be more sensitive to mechanical
sensations85. AI is also increasingly utilised to further improve the
sophistication of corneal nerve20,86–88 or immune cell segmenta-
tion and detection20,89. These advancements may improve the
applicability of corneal confocal microscopy and also improve
efficiency in observing corneal microstructures to achieve the aim
of understanding their biological significance.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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