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Abstract

Dissociation of a ligand isoniazid from a protein catalase was investigated using all-

atom Molecular Dynamics (MD) simulations. Random Acceleration MD (τ -RAMD)

was used where a random artificial force applied to the ligand facilitates its dissocia-

tion. We have suggested a novel approach to extrapolate such obtained dissociation
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times to the zero-force limit assuming never attempted before universal exponential

dependence of the bond strength on the applied force, allowing direct comparison with

experimentally measured values. We have found that our calculated dissociation time

was equal to 36.1 seconds with statistically significant values distributed in the interval

0.2-72.0 s, that quantitatively matches the experimental value of 50±8 seconds despite

the extrapolation over nine orders of magnitude in time.

Figure 1: For Table Of Contents Only

Introduction The binding affinity of a compound, quantified by the dissociation

constant KD, is the key property of the compound’s molecule for drug design. KD is defined

as the ratio of the rate constants for dissociation and association processes in the protein-

ligand system, KD = koff

kon
, where koff(on) is the dissociation (association) rate constant and

τoff(on) = 1/koff(on) is the dissociation (association) time.

Calculating on- and off-rates using molecular simulations is an active area of research,

see1–3 for recent reviews. Moreover, the kinetic properties, rather than KD, are shown to

correlate better with experimental drug efficacy2–4.

All-atom Molecular Dynamics (MD) simulations can not in most cases calculate the

kinetics of protein-ligand association and dissociation directly because experimental values

are in the range of seconds, many orders of magnitude larger than currently accessible for

straightforward MD. This is especially true for the dissociation time as it is much larger than

the association time for drug candidates (which makes them good candidates). Therefore, a

number of techniques for estimating the dissociation rates and elucidating the mechanisms of
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dissociation using nano- and microsecond long MD simulations are employed5. Despite recent

success, the calculated dissociation rates reproduce experimental values “within a factor of

2-20”6, they are “still much smaller than the experimental value” (2 orders of magnitude)7,

or even they match the experimental values with “up to 4 orders of magnitude” error8.

This discrepancy is emphasized recently3 as one of the principal difficulties facing the

MD approach to protein-ligand binding, highlighting that the primary factor affecting such

large deviation is the “extrapolation by simulation methods for inferring long-timed event”.

In this work, we use a method Random Acceleration MD (RAMD) in its variant called

τ -RAMD9,10 for obtaining dissociation times of a ligand isoniazid dissociating from a pro-

tein catalase. Isoniazid is the main drug for treating tuberculosis which targets catalase, a

vital protein for functioning of Mycobacterium tuberculosis 11. The method’s idea consists of

applying a small force to the ligand keeping the force constant in magnitude but changing

periodically and randomly its direction in order to accelerate the unbinding. The simulation

stops when the ligand reaches a predefined distance from the active site at which point it is

considered dissociated and the time of dissociation is recorded. This approach is to certain

extent similar to coupling spatial separation and chemical association/dissociation rate dis-

cussed in12 but assures a simpler realisation required for the fully atomistic MD approach.

As a result, τ -RAMD provides a set of dissociation times as a function of the magnitude of

the applied force.

We here focus on the physical insight provided by such application of the random force to

the system. Using recent results from the stochastic theory of reaction rates, we show that

the simulated data can be used for estimating dissociation times that quantitatively match

the experimental value of τ expoff = 50 seconds.

Theory The computer experiment, realised through τ -RAMD, generates data in

the form of the number of ligands that remain associated with protein at time t, N(t).

Normalised to 1 at zero time this gives the survival probability N(t)
N(0)

of finding the ligand

associated with the protein at time t. Therefore, the first question for the theory is ‘how
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to define the dissociation time τoff based on the survival probability N(t)
N(0)

for meaningful

comparison with experimentally measured τ expoff ’. As this value of τoff obtained in simulation

depends on the artificial applied force f , the second question is ‘how to extrapolate the

simulated dissociation times to zero force for comparison with real experiment’. As our data

shows, answering both questions requires non-trivial physical approaches.

Definition of τoff The origin of the stochastic theory of reaction rates including dis-

sociation processes is dated back to the seminal work by H.A. Kramers13 who considered

the microscopic origin of macroscopic processes of chemical kinetics as random motion of

thermally activated particles crossing a potential barrier. Further development of this theory

can be found in comprehensive reviews14–17.

In the simplest case of classical Kramers’ kinetics, the probability density for spatiotem-

poral distribution of random particles satisfies the Fokker-Plank equation. Integrating its

solution in the limits of the barrier gives the desirable time evolution of the survival proba-

bility N(t)
N(0)

relaxing as an exponential function; respectively, τoff is defined as the inverse of

the exponential coefficient.

However, there is also a possibility of the presence of anomalous kinetics that lead to the

fractional Fokker-Plank equation with non-exponential relaxation behaviour18. It should be

pointed out that such non-exponential, so-called “non-spectral”, modes can exhibit them-

selves even in the case of the classical Fokker-Plank equation when initial conditions are

taken from broad, highly non-stationary initial probability densities19. In this case a two-

stage process of relaxation can be revealed when the leading power-law mode changes to

the conventional spectral (exponential) relaxation mode during the time evolution of the

system’s dynamics20.

Summarising, the dynamics of the ligand’s probability to be dissociated from the protein

can have two regimes:

(I) a non-exponential one at small times caused by non-equilibrium initial conditions

originated from complex intermolecular interactions in the system under the influence of the
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applied τ -RAMD external forces,

(II) a classical exponential relaxation at longer times when the above initial conditions

are equilibrated.

The initial non-exponential regime is short-lived and, thus, undetectable by the experi-

ment. We, therefore, assume that τoff is defined by the second, much longer, regime and it

is equal to the inverse of its exponential coefficient. In the following, for brevity, we use τoff

and τ as synonyms.

Dependence of dissociation time τ on the applied force Several works on lower-

ing the potential barrier of dissociation under either the influence of additional applied forces

or by velocity activating the particles within the context of dissociation or first passage time

from a potential well exist21–24. However, these models are quite abstract and they deal with

artificial numerical simulations, rather than with real biophysical systems.

To the best of our knowledge, the first attempt to take into account the influence of the

external force f on the receptor-ligand coupling was proposed by G.I. Bell25, who considered

the characteristic lifetime of associated state τ in the simplest form

τ = ν0 exp [(E0 − γf) /kBT ] , (1)

where ν0 is a function of natural frequency of oscillations of the system in the bound state

that corresponds to the standard Kramers’ theory. Respectively, when f → 0, the value

τ(f = 0) reduces to the inverse Kramers’ dissociation constant for the unperturbed system.

E0 is the bond energy, γ is some phenomenological parameter, and kB and T are Boltzmann’s

constant and the system’s temperature.

Note that Eq. (1) can be formally considered as a solution of the ordinary differential

equation

dτ

df
= − γ

kBT
τ. (2)

From the simplest point of view of dimensional analysis, the parameter γ has a meaning
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of some characteristic length, which a particle should overcome under forcing which can

be considered as work diminishing the initial free energy of the barrier/bond. Clearly, this

work and, thus, γ depend on the force f . We here suggest a model by assuming that this

characteristic “length” decreases with force in the same Boltzmann-like manner:

γ = γ0 exp [(−γ′f) /kBT ] . (3)

A similar line of reasoning was used to describe the so-called “catch bonds” that increase

their strength with growing applied force26,27. Thus, we hypothise that this behaviour has a

universal character for complex biological molecules.

Substituting Eq. (3) into Eq. (2), we obtain the differential equation

dτ

df
= − γ0

kBT
e
− γ′f
kBT τ, (4)

which can be easily solved by the method of separation of variables:

τ = τ0e

γ0
γ′

(
e
− γ′f
kBT −1

)
, (5)

where τ0 = ν0 exp [−E0/kBT ] is the dissociation time for the unperturbed system. It is

easy to see that τ0 is equal to the solution (5) with f = 0. Towards the large forces, the

solution (5) tends asymptotically to τ∞ = τ0 exp (−γ0/γ
′). It has a finite value that is agreed

with the stochastic character of the model since even if the applied force destroys the barrier

completely, a particle needs some time to leave the vicinity of its initial position via a random

walk. At the same time, τ∞ << τ0 in multiple orders of magnitude, i.e. γ′ << γ0. Note

also that for weak perturbation forces, γ′f/kBT << 1, the solution (5) reduces to the Bell’s

expression (1) with γ = γ0.
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Eq. (5) can be linearised as

ln
(

ln
(
τ

τ0

e
γ0
γ′

))
= ln

(
γ0

γ′

)
− γ′

kT
f. (6)

This expression contains true dimensionless and strictly positive arguments of logarithms

but they contain unknown parameters not accessible in direct measurements or simulations.

Whence, Eq. (6) plays a role of a qualitative argument, which demonstrates a possible origin

of the functional dependence in the form of doubly logarithmic dependence of the escape time

on the applied force. Since Eq. (6) contains a combination of phenomenological parameters,

it is more convenient to apply some rescaling intended to get a simpler expression for the

further analysis of simulated data.

Rescaling the escape time τ by the constant eγ0/γ
′

τ0
, τ̃ = τ e

γ0/γ
′

τ0
we obtain τ̃0 = τ0

eγ0/γ
′

τ0
=

eγ0/γ′ from which γ0/γ
′ = ln(τ̃0), ln

(
γ0

γ′

)
= ln (ln (τ̃0)) and Eq. (6) becomes

ln (ln (τ̃)) = ln (ln (τ̃0))− γ′

kT
f, (7)

providing a linear dependence between the double logarithm of the rescaled dissociation time

and the applied force. Clearly, for f = 0 the dissociation time τ is equal to τ0 for non-scaled

dissociation times.

Molecular model and simulation details Catalase from Mycobacterium tubercu-

losis (MtKatG) is the target for isoniazid. However, no experimental atomistic data is

available for setting the initial structure of the complex for MD. Fortunately, Mycobacterium

tuberculosis catalase (MtKatG) and Burkholderia pseudomallei catalase (BpKatG) have very

similar atomic structures and activity against isoniazid28. As no experimental structure of

isoniazid-bound MtKatG is available in the Protein Data Bank29, atomic coordinates were

obtained by superimposing the crystal structures of MtKatG (PDB: 1sj2) and the complex

BpKatG-INH (PDB: 5syi) using UCSF Chimera30. Molecular Dynamics simulation details

are provided in Supporting Information.
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Multiple τRAMD calculations were carried out by applying different forces to the ligand:

550, 500, 450, 400, 350, 300 and 250 kJ
mol·nm. If the distance between the centers of mass

of the ligand and the protein changed by less than 0.025 nm, the direction of the force was

randomly altered. The maximum COMs distance at which the ligand was guaranteed to

leave the protein surface was set to 5 nm. At each force value, a number of runs, N(0)

(up to 200), was performed using identical initial coordinates and velocities with the only

different parameter being the random seed for random force generation. Since isoniazid is a

small ligand and its conformation and position in the active site hardly change over time,

sampling of the bound state (i.e. obtaining several starting structures) was not necessary

and did not affect the final result (the dissociation time).

Data processing For each force value, the set of dissociation times was recalculated

to the dependency of the survival probability on the simulation time. For a time moment

t the count N(t) was calculated as a total number of complexes that have not dissociated

at this time. It equals to the number of τ -RAMD runs in the set (for the given value of f)

having duration longer than t. To obtain survival probability, N(t) was then divided by the

total number of runs N(0) in the set, t ranged from zero to the duration of the longest run

in the set, and N(t)/N(0) changed from unity at t = 0 to zero at the last t value, Fig. 2.

Obtaining dissociation times Clearly, the survival probability data pointsN(t)/N(0)

for each force demonstrate two regimes, Fig. 2. During the first stage, the decay follows a

bell-shaped curve, which can be accurately fitted as ln [− ln(N(t)/N(0))] = p ln(t) + p ln(t0),

where p is the power index and t0 is some characteristic time that results in the revealed

time dependence N(t) = N0 exp(−(t/t0)p) shown as the black dashed curve in Fig. 2. For

these two examples p are equal to 1.4 and 1.6.

However, after some time τfrac the survival probability exhibits drastic change in the

dynamics starting to follow a linear dependence of ln(N(t)/N0) vs. t that corresponds to the

usual relaxation process dN(t)
dt

= −λN(t) with the decay rate λ determining the dissociation

time τ . By the end of the exponential decay, the remained long-lasting complexes form
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”shelves” with constant N values, which distort the slope of the fitted line. These “shelves”

were formed by a very small number of non-dissociating complexes with step-wise changes

that are far from the continuous dependence of the model for fitting the data. To define the

threshold of statistically significant data and to obtain reliable fit, the values at the end were

cut off one by one until the slope stops changing (see Fig. S1 in Supporting Information for

a representative example). In some cases (as in Fig. 2 (a)) all the values were retained for

fitting as cutting off the end points did not change the slope.

The dissociation times reciprocal to the rate, τ = 1
λ
, for all forces are listed in Table 1

as well as the times of the crossover between the two regimes. Note that the values of

τ and τfrac are close to each other that supports the interpretation of the initial regime

as significantly non-equilibrium transient processes taking place at times shorter than the

characteristic relaxation time of the system. Thus, it was excluded from the further analysis.

The fitted curves for all values of the force f are included in Supporting Information.

Extrapolation to zero force The dependence of the obtained values of the dissocia-

tion time τ on the applied force f per mole was reduced to the linearised form by sequential

twice logarithmic transformation as shown in Fig. 3. The apparent linearity in the depen-

dence on f confirms the theoretical model (7). The linear fit of these values

ln (ln(τ̃)) = ln (ln(τ̃0))− κf (8)

was carried out using the standard Curve Fitting Toolbox of MATLAB, which uses the

QR factorization algorithm. Note that we used dimensional times (ps) obtained from the

data processing procedure for the fitting to avoid unnecessary complications with multiple

parameters introduced when we considered a possible theoretical model, which leads to such

double logarithmic functional form. Since we are interested in the value of τ0 only, this kind

of fitting directly gives the desired parameter as the original τ0 coincides with the scaled τ̃0.

Results and Discussion Fitting data from Table 1 using Eq. (8) results in R2 = 0.978
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and RMSE = 0.073 for the chosen scaled units.

This procedure of fitting gives the average value of the slope equal to κ = 0.0041 with

the confidence intervals from 0.0038 to 0.0044 at the level of standard deviation. The second

fitting parameter of the fitted straight line (8) has the average value ln (ln(τ0)) = 3.441 with

the confidence interval from 3.315 to 3.563 at the level of standard deviation. The numerical

values correspond to picoseconds as the dimensionality of time.

The calculated ln (ln(τ0)) assumes normal distribution around the found average value.

However, exponentiating it twice to obtain τ0 significantly changes the type of the prob-

ability distribution and requires more sophisticated procedure for determining τ0 and its

uncertainty. We evaluated them using the NIST Uncertainty Machine31 with Monte-Carlo

algorithm simulating an ensemble of 106 realisations. After the transformation the probabil-

ity distribution becomes highly long-tailed and skewed with a power law tail, which can lead

to divergent statistical moments (see Fig. S3 in Supporting Information for the distribution

plots).

For this type of distributions the robust statistical measure of the most probable value

is the median, which in our case was equal to M(τ0) = 36.1 seconds. Statistically significant

deviations from this value are quantified by the median of the absolute value of the deviations

M(|τ0 −M(τ0)|), equal to 35.9 seconds in our case and making the statistically significant

values distributed between 36.1-35.9=0.2 and 36.1+35.9=72.0 seconds.

Summarising, the found extrapolated value of τ0 is 36.1 seconds, with statistically signifi-

cant boundaries 0.2 and 72.0 s, that matches the experiential value of 50±8 s quantitatively

within the uncertainties of extrapolation and experiment.

Conclusions In conclusion, we have applied the τ -RAMD methodology to obtain

the probabilities of the ligand to dissociate from the protein. We have also suggested a

theory for these probabilities that describes their time evolution according to two regimes,

a non-exponential for small times and standard exponential for longer times. We have

identified these two regimes in the data generated by the simulations. Finally, we suggested
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Table 1: Dissociation times τ and moments of crossover from fractional exponential to
classical relaxation regime τfrac

f, kJ/(nm ·mol) τ, ps τfrac, ps
250 78397 70000
300 11044 10000
350 1319 1300
400 259 300
450 98 106
500 87 150
550 22 24

a model that allows to extrapolate the obtained dissociation times to the zero-force value that

quantitatively match the experimentally measured value of 50 seconds. This is in contrast

to the original τ -RAMD approach where no such extrapolation was attempted. Importantly,

the extrapolation has been done through nine orders of magnitude in the value of τ , from

nanoseconds to seconds. Nevertheless, the extrapolated value quantitatively reproduces the

experiential one, in contrast to the majority of current methods described in literature.

Our model can be used in other settings, for example in immunology for an alternative

calculation of the “dissociation time” as a relation of the “immunological synapse” time32–34.
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(a) F = 350 kJ/(nm ·mol)

(b) F = 500 kJ/(nm ·mol)

Figure 2: Fitting the probability of the ligand to remain associated with the protein using
models for two regimes (see text); the results for the external force strength equal to 350
kJ/(nm ·mol) (a) and 500 kJ/(nm ·mol) (b) are shown; black dashed line – non-exponential
model, blue line – exponential model, red dash-dot line – the moment of switching between
the models; the fitted values of the parameters are in Table 1.
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Figure 3: The sequence of dissociation times determined from MD simulations linearised by
a coordinate transformation as a function of the applied forces per mole (circles) and their
linear fitting (solid line). The dashed curves denote the prediction bounds with a confidence
level equal to the standard deviation. The asterisk marks the experimental value.
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