

Evaluating collocation in spoken dialogic corpora

Robbie Love, Aston University Isobelle Clarke, Lancaster University Mark McGlashan, Birmingham City University

- The study of collocation is a fundamental approach in the corpus linguistics toolkit
 - Firth (1957: 179) "You shall know a word by the company it keeps"
- Traditionally, three criteria for identifying collocations: (i) distance, (ii) frequency, and (iii) exclusivity (Brezina et al., 2015)
 - "distance specifies the span around a node word (the word we are interested in) where we look for collocates" (Brezina et al., 2015: 140)
- The 'collocation window' method measures collocation within a span, e.g. 5L & 5R (Gablasova et al., 2017: 158) at 5L-5R, the tool searches for collocational patterns within strings of up to 11 tokens in length (five either side of the node, plus the node)
- This approach is facilitated by mainstream concordancers, allowing the user to define the collocational span according to their research interests

Context

ΤΕΧΤ ΤΕΧΤ

- Many corpora have a one-to-one correspondence between text and source – all the material within an individual corpus text file comes from a single source
 - e.g. a corpus of news reporting, whereby each corpus text comprises a single news article
- With no restriction, as collocation of a given node is computed, most node-collocate pairs fall within a text

 Relatively few straddle across the boundary between the end of one text and the beginning of the next

Context

TEXT ΤΕΧΤ

- Some corpora have a one-to-many correspondence between text and source – the material within an individual corpus text file comes from several sources
 - e.g. a spoken corpus containing dialogue between multiple speakers
- This means that, as well as text boundaries, there are internal boundaries between sources in this case **utterance boundaries**
- With no restriction, as collocation of a given node is computed, there may be many node-collocate pairs that straddle utterance boundaries

The resulting collocation analysis may be based on a mixture of (a) collocate pairs produced by individual speakers and (b) collocate pairs 'co-produced' by two speakers

"[Collocates] may be in different sentences, for example: *I wasn't altogether convinced by his argument. He had some strong points but they could all be met.* Clearly there are limits of relevance to be set to a collocational span of this but the question here is whether such limits can usefully be defined grammatically, and it is not easy to see how they can."

(Halliday, 1966: 151-2)

"The notion of a purely linear collocational 'span', i.e. a stretch of a number of 'orthographic words' on either side, **disregarding sentence boundaries**, seemed to offer many theoretical as well as practical advantages; but the optimal solution consisted in 'skipping' certain 'grammatical items' which functioned merely as markers of a syntactic structure (rather than of a grammatical category)."

(Berry-Rogghe, 1970: 3)

On self-collocation: "Very many [...] are produced by the conversational situation itself. There are some examples of question and answer: Is it good? / yes it's good in a way"

(Jones & Sinclair, 1974: 46)

"In other words, most of the lexical relations involving a word *w* can be retrieved by examining the neighborhood of *w*, wherever it occurs, within a span of five (-5 and +5 around *w*) words. In the work presented here, we use this simplification and consider that **two words co-occur if they are in a single sentence** and if there are fewer than five words between them."

(Smadja, 1993: 151)

"Other decisions are whether to count only word tokens or all tokens (including punctuation and numbers), how to deal with multiword units (does out of count as a single token or as two tokens?), and whether cooccurrences are allowed to cross sentence boundaries."

(Evert, 2008: 12)

"[L]aughter most often co-occurs with other features across the span of three turns and therefore **co-occurs across the boundaries of turns**, which means that it is used co-operatively or interactionally." (Schmidt, 2020: 216)

Collocation boundaries

- "Most studies on collocations do not take clause or sentence boundaries into consideration when specifying the collocation window" (Lehecka, 2015: 4)
- However, the facility to define collocation window boundaries when computing collocation is not something we had very often encountered or seen explicitly discussed in contemporary research

- This became evident when using the Spoken BNC2014 and noticing collocate pairs that straddled utterance boundaries, e.g.:
 - A: no I have I 've seen it
 - B: <u>have</u> we ?

Case study

Spoken BNC2014 (Love et al., 2017)

- c. 11 million words transcribed casual conversation
- 1,251 texts
- 672 speakers, L1 British English (2012-2016)

Access

- Pre-loaded as reference corpus in the following concordancers:
 - CQPweb (Hardie, 2012)
 - Sketch Engine (Kilgarriff et al., 2004)
 - #LancsBox (Brezina et al., 2021)
- Corpus file download: http://corpora.lancs.ac.uk/bnc2014/signup.php

Tools: facility to restrict by boundaries

Tools offering access to pre-loaded Spoken BNC2014

- CQPweb (Hardie, 2012) no facility to restrict collocation window across boundaries
- Sketch Engine (Kilgarriff et al., 2004) no facility to restrict collocation window across boundaries
- #LancsBox (Brezina et al., 2021) facility to restrict collocation window across <u>sentence boundaries</u> only

User upload of downloaded corpus files

- AntConc (Anthony, 2022) no facility to restrict collocation window across boundaries
- WordSmith Tools (Scott, 2022) facility to restrict collocation window across various boundary types

Procedure

- Corpus files stripped of XML markup
- 'Heading' inserted at start of each utterance (new line):

I 'm fed up of her getting up mm she was n't too bad last night was she ? no she slept

- Files uploaded to WordSmith Tools 8.0 (Scott, 2022)
- Collocation computed for selected node words, in the following conditions:
 - collocation boundary: *no limits* (= NO-BOUNDARY)
 - collocation boundary: *stop at heading break* i.e. utterance boundary (= U-BOUNDARY)
- Outputs compared between conditions what difference does it make to restrict by utterance?

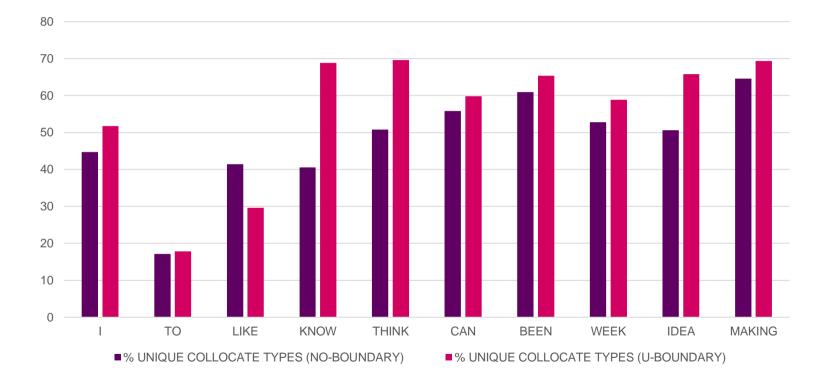
stop at sentence break
no limits
stop at punctuation break
stop at sentence break
stop at paragraph break
stop at heading break
stop at section break
stop at end of text

Procedure

NODE	RANK	FREQUENCY
I	#1	436,680
ТО	#10	200,239
LIKE	#12	157,385
KNOW	#25	87,291
THINK	#42	54 <i>,</i> 465
CAN	#60	37,760
BEEN	#100	18,555
WEEK	#200	5,811
IDEA	#300	3,281
MAKING	#400	2,225

- Collocation computed for ten node words, range of wordlist frequencies (cf. Baker, 2016)
- Collocates below log-likelihood 15.13 (p < 0.0001) excluded
- Minimum collocate frequency: 5
- Collocates ranked by MI3 association measure

- Collocates compared for two conditions:
 - NO-BOUNDARY
 - U-BOUNDARY


NODE	NO-BOUNDARY	U-BOUNDARY	% DIFF
I	3,439,310	2,651,486	-29.71
то	1,273,004	1,500,989	15.19
LIKE	1,227,929	1,016,891	-20.75
KNOW	664,296	600,445	-10.63
THINK	342,881	295,010	-16.23
CAN	264,184	241,905	-9.21
BEEN	113,111	119,514	5.36
WEEK	32,392	31,360	-3.29
IDEA	17,787	17,575	-1.21
MAKING	7,751	8,879	12.70
		MEAN	-5.78

	NO-BOUI	NDARY	U-BOUNDARY		
NODE	TOTAL TYPES	UNIQUE TYPES	TOTAL TYPES	UNIQUE TYPES	
I	1,891	846	2,166	5 1,121	
ТО	1,656	283	1,671	298	
LIKE	1,041	431	867	257	
KNOW	464	188	885	6 09	
THINK	392	199	635	5 442	
CAN	564	315	619	370	
BEEN	351	214	396	5 259	
WEEK	178	94	204	120	
IDEA	81	41	117	7 7	
MAKING	96	62	11 1	77	

Findings: unique collocate types

Mean (NO-BOUNDARY) = <u>47.93%</u>

Mean (U-BOUNDARY) = <u>55.68%</u>

Findings: top collocates of *I*

	NO-BOUNDARY		U-BOUNDARY			
RANK	COLLOCATE	MI3	TOKENS	COLLOCATE	MI3	TOKENS
1	ΝΊ	37.62	112,955	ΝΤ	37.12	100,737
2	DO	37.12	92,394	DO	36.59	81,660
3	IT	36.82	118,199	THINK	36.5	61,417
4	THINK	36.68	65,362	KNOW	35.8	58,706
5	YEAH	36.39	96,540	ΙΤ	35.64	90,051
6	KNOW	36.28	65,640	WAS	35.22	58,563
7	THAT	35.99	84,638	ТО	35.13	66,281
8	AND	35.98	89,634	AND	34.99	71,295
9	ТО	35.83	77,903	LIKE	34.96	58,795
10	WAS	35.73	65,847	THAT	34.87	65,437
11	YOU	35.71	87,670	VE	34.62	38,539
12	LIKE	35.71	69,874	THE	34.5	65,358
13	THE	35.54	83,071	YOU	34.34	63,957
14	VE	34.95	41,621	MEAN	34.21	27,806
15	BUT	34.58	46,822	JUST	33.49	34,202
16	NO	34.57	45,213	BUT	33.44	36,044
17	MEAN	34.38	29,415	YEAH	33.37	48,218
18	JUST	34.16	39,913	HAVE	33.34	32,480
19	SO	34.06	41,623	NO	33.06	31,930
20	HAVE	33.98	37,596	LL	32.83	21,228

Findings: collocate types of *I*

• 846 (of 1,891) collocate types are **unique to NO-BOUNDARY condition**, i.e. they are **not** identified as collocates when restricting for utterance boundary, e.g. (top 10):

so, erm, er, at, ANONNAMEF, time, where, here, look, much

 1,121 (of 2,116) collocate types are unique to u-воимдаку condition, i.e. they are not identified as collocates when no boundary restriction is in place, e.g. (top 10):

two, come, which, other, these, lot, into, way, stuff, little

– e.g. *two*

NO-BOUNDARY	LL 5.77	MI3 27.44
U-BOUNDARY	LL 570.58	MI3 26.19

Findings: collocate frequency for *I*

 Ranking % difference in collocate frequency, i.e. the biggest reduction from NO-BOUNDARY → U-BOUNDARY

- These are words that are identified as collocates of *l* in both conditions, but have the biggest % difference in collocate frequency between the two conditions
- Several of these can be associated with turn-taking / interactional discourse marking – i.e. co-constructed collocation

RANK	COLLOCATE	NO-BOUNDARY	U-BOUNDARY	% DIFF
1	НМ	574	150	-73.87
2	ММ	27,692	8,285	-70.08
3	ΥΑΥ	150	45	-70.00
4	UHU	836	255	-69.50
5	DUH	32	10	-68.75
6	НММ	503	172	-65.81
7	YEP	657	231	-64.84
8	DEAR	769	277	-63.98
9	SEMI	15	6	-60.00
10	FALLS	24	10	-58.33
11	OPPOSED	34	15	-55.88
12	THANK	1,415	636	-55.05
13	FIELDS	20	9	-55.00
14	UNCLEARWORD	30,117	13,785	-54.23
15	ACADEMY	13	6	-53.85
16	OURSELVES	41	19	-53.66
17	COOL	1,105	516	-53.30
18	АН	3,988	1,925	-51.73
19	BRILLIANT	513	255	-50.29
20	YEAH	96,540	48,218	-50.05

Findings: top collocates of *think*

	I	NO-BOUNDARY			U-BOUNDARY	
RANK	COLLOCATE	MI3	TOKENS	COLLOCATE	MI3	TOKENS
1	THINK	39.3	59,955	THINK	39.27	58,914
2	IT	32.16	20,202	DO	31.63	12,994
3	DO	32.06	14,375	ΝΤ	30.78	11,667
4	YOU	31.59	16,959	THAT	29.74	10,019
5	ΝΤ	31.26	13,028	THE	28.72	8,619
6	THAT	30.57	12,133	то	28.07	6,488
7	THE	29.55	10,433	WAS	27.7	5,158
8	THEY	28.82	6,618	AND	27.55	6,405
9	ТО	28.74	7,588	OF	27.52	4,982
10	BUT	28.72	6,051	IS	27.1	4,161
11	AND	28.72	8,392	SO	27.07	4,142
12	SO	28.2	5,377	LIKE	27	4,677
13	OF	28.18	5,797	WE	26.82	3,750
14	HE	28.12	5,170	BE	26.81	3,214
15	IS	28.02	5,147	YEAH	26.79	5,275
16	LIKE	27.91	5,774	ABOUT	26.47	2,461
17	NO	27.8	4,739	WELL	26.09	2,915
18	JUST	27.66	4,442	WOULD	25.92	2,157
19	WELL	27.48	4,017	WHAT	25.83	2,781
20	BE	27.46	3,735	RE	25.76	2,530

Discussion

- Restricting collocational measurement to speaker utterance does have effects on observations
- The extent of the effects is variable and requires further investigation
 - variability according to statistical measure, span size
 - effects on collocation networks (e.g. Brezina et al., 2015)
 - the role of visualisation
- While one effect is a net reduction in collocate frequency, another effect is variation in significant collocate types
 - restricting to U-BOUNDARY does remove collocates, but it also introduces new ones

Discussion

- Collocation across boundaries has been discussed in the literature. However, we argue that:
 - Relative to recent developments in the computation and visualisation of collocational relationships, collocational window boundaries appear to have been overlooked
 - Since collocational boundaries for utterances are not accounted for by popular concordancers, they are unlikely to be considered by many users
- When computing collocation, users working with spoken dialogic corpora should make (and report) an explicit decision on boundaries
 - While this is already possible (indirectly) in some concordancers, tool developers should consider introducing utterance boundary restriction as a feature
 - This will make the issue of collocational boundaries more visible and, therefore, something that more users are likely to take into account

Thank you

r.love@aston.ac.uk

i.clarke@lancaster.ac.uk

Mark.McGlashan@bcu.ac.uk

@lovermob

@issy_clarke1

@Mark_McGlashan

References

Anthony, L. (2022). AntConc (Version 4.1.3) [Computer Software]. Tokyo, Japan: Waseda University. Available from https://www.laurenceanthony.net/software

- Baker, P. (2016). The shapes of collocation. International Journal of Corpus Linguistics, 21(2), 139-164. https://doi.org/10.1075/ijcl.21.2.01bak
- Berry-Rogghe, G. (1970). Collocations: Their computation and semantic significance. PhD thesis, University of Manchester.
- Brezina, V., McEnery, T., & Wattam, S. (2015). Collocations in context: a new perspective on collocation networks. International Journal of Corpus Linguistics, 20(2), 139-173. https://doi.org/10.1075/ijcl.20.2.01bre

Brezina, V., Weill-Tessier, P., & McEnery, A. (2021). #LancsBox v. 6.0. [software]. Available at: http://corpora.lancs.ac.uk/lancsbox

- Evert, S. (2008). 'Corpora and collocations'. In A. Lüdeling and M. Kytö (Eds.), Corpus Linguistics. An International Handbook, article 58. Mouton de Gruyter, Berlin.
- Firth, J. R. 1957. "A synopsis of linguistic theory 1930–1955". In F. Palmer (Ed.), Selected Papers of J. R. Firth 1952–1959. London: Longman, 168–205.
- Gablasova, D., Brezina, V., & McEnery, A. M. (2017). Collocations in corpus-based language learning research: identifying, comparing and interpreting the evidence. Language Learning, 67(Suppl. 1), 155-179. https://doi.org/10.1111/lang.12225

Halliday, M.A.K. (1966). 'Lexis as a linguistic level'. In C. E. Bazell et al. (Eds), In Memory of J. R. Firth. Longman, 148-62.

Hardie, A. (2012). CQPweb - combining power, flexibility and usability in a corpus analysis tool. International Journal of Corpus Linguistics, 17(3), 380–409. https://doi.org/10.1075/ijcl.17.3.04har

Jones, S., & Sinclair, J. (1974). English lexical collocations: A study in computational linguistics. Cahiers de lexicologie, 24(1), 15-61. 10.15122/ISBN.978-2-8124-4277-3.P.0017

- Kilgarriff, A., Baisa, V., Bušta, J., Jakubíček, M., Kovář, V., JMichelfeit, J., Rychlý, P., & Suchomel, V. (2014). The Sketch Engine: Ten years on. Lexicography, 1: 7-36. http://www.sketchengine.eu
- Lehecka, T. (2015). 'Collocation and colligation'. In J. Östman & J. Verschueren (Eds.), Handbook of Pragmatics Online, 19, John Benjamins (pp. 1-20).
- Love, R., Dembry, C., Hardie, A., Brezina, V., & McEnery, T. (2017). The Spoken BNC2014: designing and building a spoken corpus of everyday conversations. *International Journal of Corpus Linguistics*, 22(3) (Special Issue: 'Compiling and analysing the Spoken British National Corpus 2014'), 319-344. DOI: 10.1075/ijcl.22.3.02lov
- Scott, M., (2022). WordSmith Tools version 8 (64 bit version). Stroud: Lexical Analysis Software.
- Schmidt, S. (2020). Rapport management in online spoken interaction: A cross-cultural linguistic analysis of communicative strategies. PhD thesis, Birmingham City University.
- Smadja, F. (1993). Retrieving Collocations from Text: Xtract. Computational Linguistics, 19(1), 143-177.