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Abstract: We implement a new variant of the end-to-end learning approach for the performance
improvement of an optical coherent-detection communication system. The proposed solution
enables learning the joint probabilistic and geometric shaping of symbol sequences by using
auxiliary channel model based on the perturbation theory and the refined symbol probabilities
training procedure. Due to its structure, the auxiliary channel model based on the first order
perturbation theory expansions allows us performing an efficient parallelizable model application,
while, simultaneously, producing a remarkably accurate channel approximation. The learnt
multi-symbol joint probabilistic and geometric shaping demonstrates a considerable bit-wise
mutual information gain of 0.47 bits/2D-symbol over the conventional Maxwell-Boltzmann
shaping for a single-channel 64 GBd transmission through the 170 km single-mode fiber link.
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1. Introduction

When dealing with optical communication systems, there is still the lack of the general com-
munication theory describing nonlinear fiber channels (where the dispersive effects intertwine
with the fiber nonlinearity), in contrast to the classical additive white Gaussian noise (AWGN)
communication channel. Thus, many fundamental and practically important questions related
to the optimal coding, modulation, pulse-shaping, and channel equalization for the nonlinear
optical transmission systems, remain either partially solved or even yet to be answered [1,2]. In
particular, the optimal signal statistics (the Gaussian distribution for AWGN [3]) is not known
for the transmission affected by the simultaneous action of fiber dispersion and nonlinearity.
Addressing this problem numerically, in general, is not practically feasible due to the high
computational cost of modelling high-speed transmission via dispersive nonlinear channels. Thus,
there remains the research challenge related to developing practical transmitters and receivers
with signal format and modulation inherently adjusted to nonlinear transmission. We note that
currently-used transceivers are suboptimal, which brings about a cap on the achievable data rates
and transmission distances. Recently, machine learning (ML) methods and, in particular, artificial
neural networks (NNs) have been applied to the design of optical communication systems, see,
e.g., recent Refs. [4–10] and numerous literature sources therein. Albeit it is rather difficult (if
possible at all) to obtain the general conclusions on the optimal signal shaping and modulation in
the realistic nonlinear fiber systems, it is possible to obtain some sub-optimal results by using
specific ML techniques tailored to deal with complex nonlinear problems.

It is important to point out that the properties of optical fiber-channels strongly depend on
signal parameters: the power is linked to the nonlinear effects, and the carrier pulse width
defines the dispersive signal broadening and respective memory effects. Then, the transmission
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distance defines how essential the noise-induced corruptions are, the strength of nonlinear signal
distortions, and the dispersive effects. Therefore, different nonlinear fibre channels can have
rather distinct optimal signal modulations and coding.

End-to-end (E2E) learning approach, proposed in [11], is a machine learning technique offering
a way to automatically tailor signal modulation and coding for an arbitrary communication link.
The basic idea of E2E learning lies in representing the link from messages-in to messages-out as
a single NN, differentiable with respect to the link parameters, to simultaneously optimize these
parameters by using, e.g., the efficient gradient-descent-based optimization. Many applications
of the E2E learning in different communication links then followed [12,13].

The first applications of E2E learning to optical communication systems were done for intensity
modulation / direct detection (IM/DD) systems. In Refs. [14–17], the E2E learning of geometric
constellation shaping (GS), i.e., optimal symbol locations, for IM/DD optical communication
systems was proposed. Further, in [18] the E2E learning of waveforms was considered for the
specific case of a link based on nonlinear frequency division multiplexing.

The following works dealt with the E2E learning of the optimal constellation points locations,
i.e. on the GS, and the pre-distortion techniques in coherent systems. In [19–24], the E2E
learning of single-symbol GS was considered for a coherent communication system. While
[19–23] considered the distortions generated only by the optical channel, in [24] a more realistic
link model that included the local oscillator laser noise, was studied. In [13,25–30], the E2E
learning of GS, signal waveform, and nonlinear pre-distortion resistant to transmitter distortions
was considered. However, the true complexity of nonlinear fiber-optic channel distortions was
neglected in these works, namely, the distortions were either completely neglected, or modelled
via a simplified Gaussian noise model. Conversely, in [31] the authors considered the joint E2E
learning of GS and linear pre-distorter mitigating the fiber channel distortion. Nonetheless, the
pre-distorter learnt in that work was rather trivial: it combined the Nyquist pulse shaper and
chromatic dispersion compensator, and, hence, it actually did not contribute to the nonlinearity
mitigation.

In our current paper, we propose the machine learning algorithm for E2E learning of the
constellation shaping that takes into account the nonlinearities and memory present in optical
channel distortions. With this algorithm, we jointly optimized the symbol locations in the
constellation diagram, the symbol probabilities, and the nonlinear pre-distortion. The learnt
transmitted signal distribution chooses the transmitted symbol based not only on the message
sent in the corresponding time slot, as in the conventional constellation shaping, but also on
the messages sent in the neighbouring time slots. Therefore, we refer to the resulting signal
distribution as the multi-symbol constellation shaping (MSCS).

In the proposed E2E learning algorithm, we implement two key new features. The first
one is the utilization of the auxiliary channel model based on perturbation theory [32], which
allows us to reduce the computational efforts/resources needed to model the complex mixture of
nonlinear and linear distortions taking place in fiber-optic links. Second, we implemented the
training procedure for the simultaneous learning of symbol probabilities and locations according
to [33], in which the accuracy of the procedure was demonstrated for the AWGN channel.
These innovations let the algorithm learn the signal distribution outperforming a conventional
Maxwell-Boltzmann (MB) one, where the latter is optimal for the AWGN channel [34]. In
more details, we applied the proposed algorithm to a single-channel dual-prolarized 64 GBd
transmission over 170 km standard single mode fiber (SMF) link, where the expected gains
by nonlinear shaping are particularly high [35]. The learnt MSCS led to the bit-wise mutual
information (BMI) gain of 0.47 bits/2D-symbol/polarization over the conventional MB shaping.
Furthermore, we show that the proposed E2E learning is applicable for the cases when, because
of hardware- or complexity-related limitations, we cannot use multi-symbol constellation shaping.
For the same test case, we learnt a single-symbol joint probabilistic and geometric shaping
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showing 0.074 bits/2D-symbol/pol. BMI gain over the reference MB shaping. Moreover, for the
case when geometric shaping is not an option, we learnt the single-symbol probabilistic shaping
which outperforms the MB shaping by 0.043 bits/2D-symbol/pol. in terms of BMI. Note that the
proposed method is rather generic and is applicable to improving the quality of transmission in
an arbitrary coherent fiber-optic communication link. In [36] we successfully applied the similar
E2E learning technique to a 64 GBd transmission over long-haul 30x80 km (2400 km) SMF link.

This work extends our previous approaches from Refs. [36,37]. The remainder of the paper is
organized as follows: Section 2 describes in the proposed E2E learning algorithm; Section 3
describes the considered testcase and the results achieved by the proposed E2E learning; and
Section 4 concludes the paper.

2. Models and the algorithm description

2.1. End-to-end learning

In the end-to-end learning approach, the whole system is implemented as a single NN from
bits-in to bits-out, including transmitter, channel, and receiver. This enables the joint training of
transmitter and receiver. The idea of the approach was first suggested in [11]. The scheme of
end-to-end platform used in this paper is given in Fig. 1.

Fig. 1. Principal scheme of the end-to-end learning algorithm implemented in this paper.
Blue denotes trainable blocks, dashed lines denote feedback from loss function. MF stands
for matched filtering, CDC stands for chromatic dispersion compensation.

2.2. Transmitter design, constellation shaping, and pre-distortion

We consider the two-stage transmitter, consisting of a sampler followed by a nonlinear pre-
distorter. Note that the transmitter’s separability into autonomous stages, with each stage having
its well-defined purpose, improves its interpretability and cost-efficiency [13].

In the sampler, the input data is mapped to some complex-valued constellation points
sm ∈ S ∈ C,|S| = M and then transmitted over a channel. A fixed bit label bm = [bm,1, . . . , bm,J],
bm,j ∈ {0, 1}, J = ⌈log2(M)⌉ is set for each symbol in the alphabet bm ⇐⇒ sm, ∀sm ∈ S. The
input data is generated in a way that symbols sm are sampled according to the discrete probabilistic
distribution pS(sm) ∀sm ∈ S. In this work, we assume that for an arbitrary distribution pS there
exists a mapper which maps the original input data stream in such a manner that the resulting
symbols are independent and identically distributed according to pS. Such an idealistic mapping
can be achieved by a distribution matcher, e.g., the constant composition distribution matching
(CCDM), with a long enough sequence.

Because of the imperfections of the communication channel, the information rate of the system
depends on the locations of constellation points S and their probability distribution pS. Therefore,
it is possible to maximize the system information rate by optimizing symbol locations S and
occurrence probabilities pS. Optimizing S is called a geometric constellation shaping (GS), and
optimizing pS is called a probabilistic constellation shaping (PS) [38]. Notably, for linear channels



Research Article Vol. 31, No. 1 / 2 Jan 2023 / Optics Express 4

with AWGN, the family of Maxwell-Boltzmann (MB) distributions results in information rates
very close to the optimal PS [34]

pS(sm) ≈ exp
(︂
−θ |sm |

2
)︂

, (1)

where θ is a distribution hyper-parameter referred to as the MB shaping parameter. Nevertheless,
finding the optimal shaping for nonlinear-dispersive optical fiber channels is a relatively subtle
problem [35].

In this work, we consider a separate optimization of PS, GS, along with the joint optimization
of both S and pS; the joint optimization method is referred to as the joint shaping (JS). The
sampler generated the dual-polarized signal X = {Xh, Xv} with both polarization components
Xh, Xv sampled from the same alphabet xi,h/v ∈ S according to the same distribution pS.

The sampler was followed by a trainable nonlinear pre-distorter. The goal of the latter
is to pre-compensate the nonlinear channel distortions through pre-processing the symbol
sequence Xh/v generated by the sampler, before the sequence is sent into the optical channel.
The pre-compensation is made in such a way that the symbol sequence at the channel output,
Y , approximates the sampled input symbol sequence. We consider a perturbation-based pre-
distortion (PPD) [39], which adds to each transmitted symbol xi,h/v an additive correction
∆PPDxi,h/v, depending on the characters transmitted in the neighboring slots in both polarizations
xi,h, xi,v. The pre-distortion ∆PPD is defined as a linear combination of cubic polynomials Tm,n
calculated from the symbols co-propagated with the pre-processed symbol at the neighboring
time slots. In more detail, for any symbol xi,h/v transmitted at the i-th time slot in the H- or
V-polarization, the pre-distortion takes the form:

∆PPD(xi,h/v) =
∑︂
m,n

Cm,n · Tm,n; Tm,n = xi+m,h/v ·
(︂
x∗i+n+m,h/vxi+n,h/v + x∗i+n+m,v/hxi+n,v/h

)︂
, (2)

where xi+m,h/v is the symbol in H-/V-polarization shifted by m time slots from the target symbol
xi,h/v, and Cm,n are the trainable weights.

The performance-to-complexity ratio of PPD is determined by the range of polynomials Tm,n
taken into consideration in a particular algorithm. Since the PPD is a linear regression over Tm,n
terms, the importance of each term in the trained PPD can be assessed by the absolute value of
the coefficient |Cm,n | corresponding to it. Hence, one can reach a cost-effective PPD by training
an excessively complex one and then pruning it, i.e. removing terms Tm,n with the absolute value
smaller than the chosen cut-off value Tm,n : |Cm,n |<Ccutoff. This makes the cut-off value Ccutoff an
important hyper-parameter of PPD learning, defining the performance-to-complexity ratio of the
resulting algorithm. We consider its optimization as part of E2E learning in Section 3.4.

2.3. RP-based channel model

The second autoencoder block, the auxiliary channel model, maps the signal generated by the
transmitter X to a sequence of symbols Y collected by the receiver. The model includes both
deterministic and stochastic distortions, expressed via the probability of receiving Y given X
was transmitted, pY |X . The approximate channel model must be computationally simple and
easy to differentiate, to allow for fast transmitter learning; but, simultaneously, it has to describe
the distortion introduced by the channel accurately enough, so that the learned transmitter and
receiver could emulate well a real-world communication link.

The nonlinear dispersive channel is typically modelled by the Manakov equations, see Eq. (3)
below, which are simulated by a serial cascade of alternating convolutional and pointwise
nonlinear operators; this solution scheme is referred to as the split-step Fourier method (SSFM)
[40]. The SSFM can be represented by the convolutional NN consisting of many layers [31,41],
and the complexity of such a convolutional NN makes the calculation of gradients of the model
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outputs over its inputs (in the back-propagation learning [42]) very slow and rather challenging.
First, the learning process implies that all the intermediate states are stored, and it makes the
process memory hungry. Second, the back-propagation through many layers often results in the
numerical errors, leading to the infamous uncontrolled growth or vanishing of gradients [9,43].
One way to circumvent these problems is to consider a simpler auxiliary channel model. This
approach, while typically offering the lesser degree of channel approximation precision than
SSFM and, hence, the smaller shaping gain of E2E learned constellation shaping, can greatly
reduce the numerical complexity of E2E learning. Among others, the following models were
proposed for this purpose: the E2E learning using dispersion-free nonlinear channel model [44];
a nonlinear interference noise (NLIN) model [20,37,45], which considers nonlinear distortion
as a AWGN process with a constellation-dependent variance [46,47]; or neglecting the optical
channel nonlinearity at all by modelling its distortion as a fixed AWGN [13]. Nonetheless, all
these models neglect the channel memory, i.e., inter-symbol interactions. On top of it, NLIN
and AWGN-based channel models erase the information about the determinism of nonlinear
distortions, modelling it as a stochastic noise. These two factors prevent the E2E learning of
any memory-aware constellation shaping or nonlinearity pre-distorter, both of which rely on the
information about the inter-symbol behavior of nonlinear distortion.

At the same time, NLIN-based auxiliary channel model can be useful for the limited task of
E2E learning the single-symbol constellation shaping. In general, we expect the E2E learning
via memory-aware auxiliary channel models to obtain higher shaping gain than NLIN, because
of these models being free from the assumption of Gaussianity of the injected channel distortion.
Nonetheless, the simplicity of NLIN model may lead to faster and cheaper training procedure.
Therefore, we consider comparing NLIN with memory-aware channel models to be a fruitful, yet
still open research question.

Recently, the data-driven approaches, learning the channel model properties from analysing the
propagated data, were suggested [48,49], with [23] proposing the E2E GS learning in a coherent
communication link through a data-driven auxiliary channel model. On one side, compared to
the aforementioned approaches, the data-driven models do not require precise information about
the optical channel properties. Nonetheless, the data-driven models are often less cost-effective
since they require additional computational resources to learn the link parameters. In this paper,
we assume the common case of the channel parameters being known in advance, which, therefore,
renders the data-driven approach excessively complex.

Following our previous work [36], we propose here the application of first-order regular
perturbation model (RP model) as an auxiliary channel model. Particularly, we suggest using the
RP model for calculating both loss value and gradients, referred to as the forward and backward
passes, correspondingly. In the following, we describe the RP model and the benefits of its
application in more detail.

Consider the Manakov equations describing the evolution of the waveform of a dual-polarized
optical signal E(z, t) = u(z, t)

√︁
f (z) during its propagation over a fiber-optic link with lumped

optical amplifiers (OAs) [50]:

∂u
∂z
= −i

β2
2
∂2u
∂t2
+ i

8
9
γf (z)∥u∥2u + η(z, t), f (z) = exp

(︂
−
α

2
(︁
z − Lsp⌊z/Lsp⌋

)︁ )︂
, (3)

where f (z) models the optical losses (with α being the attenuation coefficient) and amplification
accumulated till point z, Lsp denotes the fiber span length, β2 and γ are the chromatic dispersion
and Kerr nonlinearity coefficients; η(z, t) denotes the amplified spontaneous emission noise
(ASE) injected by OAs.

The first-order regular perturbation (RP) [32,50,51] is an elaborate method to approximate
u(z, t) in a weakly nonlinear regime. The principal scheme of RP model is given in Fig. 3. The
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channel output u(z, t) is approximated using the perturbations according to expressions:

u(z, t) = uL(z, t) + uNL(z, t) + O(γ2),

uL(z, t) = Dz

[︂
u(0, t) +

∫ z
0 dx η(x, t)

]︂
,

uNL(z, t) =
∑︁Nst

m=1 Dz−(m−0.5)δ
[︁
Kδ,m[uL((m − 0.5)δ, t)]

]︁
,

(4)

with
Dz[·] = F −1 [︁

exp(iβ2zω2/2)F [·]
]︁

,

Kδ,m[u(t)] = i 8
9γLeff f ((m − 1)δ) ∥u(t)∥2u(t),

f (z) = exp
(︁
−α

2
(︁
z − Lsp⌊z/Lsp⌋

)︁ )︁
, Leff =

1−e−αδ

α .

Here δ = z/Nst is the algorithm’s spatial step size, ∥ · ∥ is the Euclidean vector norm, and
F denotes the Fourier transform. Dz[·] is the operator introducing the chromatic dispersion
accumulated by our signal over the distance z, Kδ,m[·] introduces the Kerr nonlinear phase shift
accumulated over the fiber span of length δ centered around the point (m − 0.5)δ, Leff is effective
step length, and f (z) was introduced in Eq. (3). Since the linear distortion uL and every term of
sum in uNL can be calculated independently, we refer to their calculation routines as to “branches”.
The number of branches Nbr = Nst + 1 is a main RP-model hyper-parameter, defining both its
precision of approximation and its complexity. Note that the amplifier noise should be realized
in the model according to Eq. (4), where the integral

∫ z
0 dx η(x, t) stands for all the ASE noise

injected into the link on the coordinate range x ∈ [0, z]. In more detail, when calculating uL(z, t),
prior to applying the Dz operator, one has to add to the input signal u(0, t) all the noises injected
by the OAs situated in the range x ∈ [0, z] including points x = 0 and x = z. For the single-span
link with post-amplification, considered in this work, the ASE noise was effectively just added as
an AWGN to u(z, t) calculated noiselessly. The case of multi-span transmission was considered
in [36].

The RP model can be better understood through its comparison with the split-step Fourier
method (SSFM) applied for solving the Manakov equations [32], see Figs. 2, 3. SSFM is
formulated as a sequence of alternating steps: the linear steps introducing the dispersive broadening
Dδ[·] and accounting for linear losses, and the full nonlinear one, exp(Kδ,m), introducing Kerr
nonlinear phase shift applied at the m-th step centered around point z = (m − 0.5)δ:

u(z, t) = Dδ/2 exp
(︁
Kδ,m

)︁
Dδ/2⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

repeat z/δ times

[u(0, t)],

exp
(︁
Kδ,m

)︁
[u(t)] = exp

(︂
i 8
9γLeff f ((m − 1)δ) ∥u(t)∥2

)︂
u(t).

(5)

So we can think of the RP model as of the simplified SSFM model Eq. (5). In more detail, the
RP model is the first order approximation of SSFM in the nonlinear parameter γ, meaning that it
disregards the effect of all the nonlinear steps exp

(︁
Kδ,m

)︁
on each other, and reduces the exponent

in the nonlinear step of SSFM in Eq. (5) to a linear approximation exp
(︁
Kδ,m

)︁
≈ 1 +Kδ,m via the

expansion exp(x) ≈ 1 + x + O(x2).

Fig. 2. Principal scheme of the split-step Fourier method, Eq. (5). The scheme is given to
illustrate the derivation of RP model, Eq. (4).
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Fig. 3. Principal scheme of the first-order regular perturbation (RP) model [32] introduced
in Eq. (4).

Compared to the “conventional” channel modelling by applying the full SSFM, the RP-model
application for channel modelling has two main advantages in the context of end-to-end learning.
First, the key advantage of RP is its parallel structure, i.e. its separability into the branches,
where each particular branch is calculated via nearly the same routine. This RP property allows
speeding up the computation of signal evolution and the computation of gradients via the "back-
propagation" stage. Hence, the overall E2E learning is parallelizable in a straightforward way,
which allows considerably speed-up its calculation by using modern multi-thread computational
hardware, e.g. multicore processors and graphics processing units (GPUs). Second, the parallel
structure of the RP model can increase the numerical stability of end-to-end learning. As noted in
[52], the SSFM structure mimics the one of a typical convolutional NN made up of interchanging
convolutions and point-wise nonlinearities. These complex multi-layered structures are prone to
numerical errors in gradient estimation, referred to as infamous exploding/vanishing problem
[9,43]. The simpler structure of RP model allows us to circumvent the gradient estimation
problems by having a single nonlinear step per branch.

Notably, in addition to all the aforementioned benefits, the RP model offers a rather good
approximation for the precise SSFM model in the practically important weakly nonliear regime
[53] and around the optimal launch power level, where the link performance is the highest. At the
same time, as expected, RP model poorly approximates optical channel at higher power levels.
We measure how well does RP model approximate a precise SSFM one later in Sec. 3.2.

2.4. Receiver and performance metrics

At the receiver, the goal is to estimate the transmitted symbol xn from each received symbol
yn ∈ Y. The optimal way is to decide according to the posterior probability PX |Y (xn |yn).
This is equivalent to computing the posterior probability P(bn |yn) based on the bit labels
bn = [bn,1, . . . , bn,K], bn,j ∈ {0, 1}. The alternative sub-optimal approach is to estimate the
posterior probabilities P(bn,j |yn) and decide on each bn,j individually. This approach corresponds
to many practical receivers using bit-interleaved coded modulation with soft-decision binary
forward error correction (FEC) codes. In such systems, the information rate determines (and
is limited) by the bit-wise mutual information (BMI) Eq. (10) [38]. We consider here such a
practical receiver.

We applied a commonly used mismatched Gaussian receiver (MGR) to approximate the bit
posterior probabilities vector q(bn,j |yn) [54,55]. In this approach, the conditional probability
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linking the channel input and output, qY |X , is assumed to obey a Gaussian distribution:

qY |X(yn |xn) =
1
πσ2

G
exp

(︄
−
∥yn − xn∥

2

σ2
G

)︄
, (6)

with its variance σG estimated as the mean squared error between the received Y and the
transmitted symbol sequence X recorded before the pre-distorter: σ2

G = E
[︁
∥Y − X∥2]︁ . Here

E[·] is mathematical expectation. While more complex trainable decoders, notably, the artificial-
neural-network based ones, can better approximate the exact channel distribution pY |X , MGR
offers a practical cost-effective solution.

Applying the Bayes rule, we can write,

qX |Y (xn = sm |yn) =
qY |X(yn |xn = sm)pS(sm)∑︁M

m̃=1 qY |X(yn |xn = sm̃)pS(sm̃)
. (7)

Let us define Sj
0/1 := {sm ∈ S : bm,j = 0/1} as the subset of transmission alphabet for which

the j-th bit in the corresponding bit labels is set as ’0’ or ’1’, respectively. The bit posterior
probability q(bn,j |yn) is then is obtained by

q(bn,j = 1|yn) =
∑︂
sm∈S

p(bn,j = 1|xn = sm) qX |Y (xn = sm |yn) =
∑︂

sm∈Sj
1

qX |Y (xn = sm |yn), (8)

since p(bn,j = 1|xn = sm) = {1, if sm ∈ Sj
1; 0, if sm ∉ Sj

1}. Similarly,

q(bn,j = 0|yn) =
∑︂

sm∈Sj
0

qX |Y (xn = sm |yn). (9)

Note that, clearly, q(bn,j = 0|yn) + q(bn,j = 1|yn) ≡ 1.

2.5. Optimization and training procedure

During the training, we optimize the symbol locations, probabilities, and pre-distorter parameters
via a batch gradient descent procedure, i.e., by a repeated generation of the training symbols’
batches of fixed size and updating the trainable parameters using the numerical gradients of our
objective function (averaged over the batches). The most challenging part here is the computation
of gradient over individual symbol probabilities. We followed the training procedure proposed in
[33]. This approach relies on a key consideration that the order of differentiation and expectation
may not be exchangeable and this can affect the accuracy of numerical gradient calculation if
the back-propagation algorithm is applied from some off-the-shelf toolboxes, like Tensorflow or
PyTorch, without some necessary changes. To convey this point better, we reproduce here the
algorithm presented in [33] in more detail.

Let s̄ be a random constellation point generated by the transmitter according to symbol
probability PS = {pS(s1), pS(s2), . . . , pS(sM)}. Since each symbol has a fixed bit labeling, we
denote the corresponding random bit labeling by b̄ = [b̄1, . . . , b̄K]. Accordingly, the transmitter
sends x̄ = s̄/

√︂∑︁M
m=1 pS(sm)|sm |2. The power normalization is required to constrain the average

power of the transmitter. Whatever the actual transmitter power is, it affects the channel
distribution pY |X(ȳ|x̄). The receiver receives symbol ȳ according to pY |X(ȳ|x̄) and computes the
likelihood of each bit labels b̄j according to the receiver’s trained posterior distribution q(b̄j |ȳ).
The objective is to train q(b̄j |ȳ) for all j at receiver as well as PS and the set of constellation points
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S to maximize the end-to-end BMI given by [38],

I := H(s̄) −
K∑︂

j=1
Eȳ

[︁
X

(︁
p(b̄j |ȳ), q(b̄j |ȳ)

)︁ ]︁
, (10)

where H(s̄) is the transmitter entropy, equal to

H(s̄) := −

M∑︂
m=1

pS(sm) log2(pS(sm)) (11)

and X(p(b̄j |ȳ), q(b̄j |ȳ)) is the cross-entropy between the actual posterior distribution p(b̄j |ȳ) and
its approximation q(b̄j |ȳ) from our receiver for each bit-label bj. Explicitly, for each bj

X(j) := Eȳ
[︁
X

(︁
p(b̄j |ȳ), q(b̄j |ȳ)

)︁ ]︁
= −

M∑︂
m=1

pS(sm)

∫
pY |X(y|xm) log2

(︁
q(b̄j |y)

)︁
dy (12)

where xm = sm/

√︂∑︁M
ω=1 pS(sω)|sω |2. It is known that for a given PS and constellation points S,

Eq. (12) is minimized when q(b̄j = 1|ȳ) becomes equal to p(b̄j = 1|ȳ) for “almost every” y values
(e.g. see [38]). Therefore, the learning task of receiver is to output q(b̄j = 1|ȳ) as close as possible
to p(b̄j = 1|ȳ). To remind q(b̄j = 0|ȳ) then can be estimated as q(b̄j = 0|ȳ) = 1 − q(b̄j = 0|ȳ).

In our case of using MGR, no receiver training is needed. Nonetheless, if one instead employs
another trainable model as a receiver, e.g. an artificial neural network, the receiver learning
becomes simply equivalent to training of K independent binary classifiers q(b̄j |y) ∀j ∈ {1, . . . , K}.
This optimization is a classical logistic regression, so we skip it here and refer to [56], where the
authors detailed the training of such receivers.

The learning task of transmitter is more challenging. We should optimize PS and S such that
the aggregate BMI I is maximized. Since PS is constraint by PS(sm) ≥ 0 and

∑︁
PS(sm) = 1, it is

more recommended to train its unconstrained logarithm ℓm such that

PS(sm) =
exp(ℓm)∑︁M

ω=1 exp(ℓω)
. (13)

Therefore, the training requires the partial derivatives of I in terms of sm, ℓm and pre-distortion
parameters Cm,n. Over symbol’s location si,

∂I

∂si
=

K∑︂
j=1

M∑︂
m=1

pS(sm)

∫
pY |X(y|xm)

∂ log2
(︁
q(b̄j |y)

)︁
∂si

dy. (14)

The above expression is obtained because probabilities pS(sm) are another optimization parameters
independent of the considered location si. Moreover, the dependence of channel conditional
distribution pY |X(y|xm) on xm and, accordingly on sm can be neglected. Recall that the role of
the channel is to draw random samples y independently according to pY |X(y|xm). In typical
communication systems, the channel is mainly governed by independent random noise sources,
e.g. AWGN, and thus its dependency on xm is a secondary effect and it can be ignored. The
dependency of q(b̄j |y) on sm is expressed from Eqs. (8, 9). Note that Eq. (14) is the basis of
geometric shaping optimization in [20,45,56] where the gradient is computed not directly, but
using back-propagation algorithm thorough the entire differential auto-encoder blocks in Fig. 1
from a training batch of input-output samples. We explain the numerical optimization later.
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Differentiation over pre-distortion parameters Cm,n is followed similarly, i.e.

∂I

∂Cm,n
=

K∑︂
j=1

M∑︂
i=1

pS(si)

∫
pY |X(y|xi)

∂ log2
(︁
q(b̄j |y)

)︁
∂Cm,n

dy, (15)

and training is similarly done using batch gradient ascent algorithm and applying back-propagation
algorithm.

Training over ℓm is slightly different as several terms in objective function I depend on ℓm.
Let us first express the differentiation explicitly and then explain how one computes it using
back-propagation algorithm. Differentiation of entropy H(s̄) results

∂H(s̄)
∂ℓm

= − log2(e)pS(sm)

(︄
ℓm −

M∑︂
ω=1

pS(sω)ℓω

)︄
, (16)

where e = exp(1) and PS(sm) in terms of ℓm is defined in Eq. (13). Differentiation of X(j) over ℓm
results in the sum of two terms

∂X(j)
∂ℓm

= −pS(sm)

(︃
X(j) +

∫
pY |X(y|xm) log2

(︁
q(b̄j |y)

)︁
dy

)︃
−

M∑︂
i=1

pS(si)

∫
pY |X(y|xi)

∂ log2
(︁
q(b̄j |y)

)︁
∂ℓm

dy.
(17)

Summing all terms together, we have the differentiation of I as

∂I

∂ℓm
=
∂H(s̄)
∂ℓm

−

K∑︂
j=1

∂X(j)
∂ℓm

. (18)

We explain now how to train the auto-encoder via batch gradient ascent algorithm to
numerically maximize I. Recall that the considered transmitter consists of two stages: sampler
and pre-distorter. To generate a batch of size N, the sampler randomly draws with replacement
N indices from the current symbol distribution PS = {pS(s1), pS(s2), . . . , pS(sM)}, sm ∈ S.
Each drawn index, let say sn, is mapped to a corresponding transmitted normalized symbol
xn = sn/

√︂∑︁M
ω=1 pS(sω)|sω |2 with a given, fixed bit label bn, e.g. Gray bit labeling. The sampled

normalized symbols xn and its corresponding bit-labels bn are stacked, respectively, in the input
symbol vector X = [x1, x2, . . . , xN] and the bit vector B = [b1, . . . bN]. The symbol power
normalization is required to keep the batch power constant during the training.

The generated input batch is processed by a cascade of pre-distorter, followed by the channel
model. The cascade maps input symbols X to the vector of channel output symbols Y =
[y1, y2, . . . , yN] according to the cascade’s conditional probability density function PY |X . The
vectors of input symbols X, input bit-labels B, and received symbols Y constitute the training
dataset. The differentiability of both pre-distorter and channel model allows calculating the
gradients of the output symbols over the input symbols and the pre-distorter parameters. The
next step is to compute the gradient numerically and apply batch gradient ascent algorithm [42,
Sec. 8.1.3]. Notably, gradient ascent, not descent as usually done in ML, should be applied
there since we are interested in increasing the optimized metrics BMI. For instance, Eq. (14) is
numerically estimated by,

∂I

∂si
≈

1
N

N∑︂
n=1

K∑︂
j=1

∂ log2
(︁
q(bn,j |yn)

)︁
∂si

. (19)

Similarly, the gradient of pre-distortion parameters Cm,n can be expressed numerically in terms
of training batch. The usual remedy is to apply back-propagation algorithm [42, Sec. 6.5] to
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compute these gradients efficiently. The back-propagation is in fact based on the chain rule
of derivatives, deriving the gradients at the input of a layer from the gradients at the output
of the layer. This way, the gradients "propagate backward" from the final output variables
zn,j = q(bn,j |yn) to the input parameters {si} or the pre-distortion parameters {Cm,n}.

Numerical computation of gradient for ℓm is slightly different. The derivatives of ∂H(s̄)
∂ℓm

are
expressed in terms of optimized parameters in Eq. (16) and, hence, do not need to be computed
via training data. The derivatives of ∂X(j)

∂ℓm
must be however computed numerically. Let Ym denote

the subset of outputs yn in the batch for which the same constellation point sm produced their
corresponding input symbol, i.e., xn = sm/

√︂∑︁M
ω=1 pS(sω)|sω |2. Let Nm denote the number of

output samples in Ym. Then, Eq. (17) can be partitioned into three terms

∂X(j)
∂ℓm

= D1(j, m) + D2(j, m) + D3(j, m), (20)

where

D1(j, m) ≈
pS(sm)

N

N∑︂
n=1

log2
(︁
q(bn,j |yn)

)︁
(21)

D2(j, m) ≈ −
1
N

∑︂
yn∈Ym

log2
(︁
q(bn,j |yn)

)︁
(remark : sm is the input for those yn) (22)

D3(j, m) ≈ −
1
N

N∑︂
n=1

∂ log2
(︁
q(bn,j |yn)

)︁
∂ℓm

. (23)

As a result, the numerical estimate of Eq. (18) is expressed by,

∂I

∂ℓm
≈
∂H(s̄)
∂ℓm

−

K∑︂
j=1

(D1(j, m) + D2(j, m) + D3(j, m)) . (24)

Note that D3(j, m) has a similar form to Eq. (19). Thus, this term is computed via back-propagation,
as explained before. The other terms D1(j, m) and D2(j, m) are available as they are part of the
cost function I (indeed, D2(j, m) is the sum of a subset of terms participating in the sum in
D1(j, m)). These terms and ∂H(s̄)

∂ℓm
Eq. (16) are available and no back-propagation is required

to compute them. To summarize, one needs to compute D3(j, m) terms via back-propagation
from output variables zn,j = q(bn,j |yn) to the design parameters ℓm. And then its results must be
summed up with other terms, i.e. D1(j, m) , D2(j, m) and ∂H(s̄)

∂ℓm
.

Finally, all the computed gradients were then used by the Adam optimizer [57] to train the
respective communication system parameters. This completes the training process of our E2E
system.

Remark: if one computes the derivatives from the numerical estimate of I, i.e.

Inum. ≈ H(s̄) +
1
N

K∑︂
j=1

N∑︂
n=1

log2
(︁
q(bn,j |yn)

)︁
(25)

then one would find that ∂Inum./∂si is the same as Eq. (19). Similarly, ∂Inum./∂Cm,n is equal to
our approximation, but this is not true for ∂Inum./∂ℓm which excludes D1(j, m) and D2(j, m) terms.
The reason isthat a change in statistics of sampler, brought by updating symbol probabilities
pS(sm) cannot be precisely expressed via the already generated samples.
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3. Results

3.1. Testcase

Having proposed the end-to-end learning algorithm for the general coherent fiber-optic com-
munication link, we illustrate its benefits on the particular case of a single-span link. More
specifically, we numerically consider the dual-polarized (DP) 64 GBd transmission of 256-symbol
constellations over the 1x170 km single mode fiber (SMF) link. The SMF parameters were
taken as: chromatic dispersion coefficient D = 16.8 ps/(nm*km), effective nonlinear coefficient
γ = 1.14 (W*km)−1, loss coefficient α = 0.21 dB/km. The span is followed by a lumped optical
amplifier (OA) with the noise figure 4.5 dB. No transceiver phase noise was considered.

During the E2E system training, we used the RP model, Eq. (5), with Nbr = 100 branches, as
an auxiliary channel model. At the same time, the performance of the learnt constellations was
estimated using the “precise” SSFM, i.e. via Eq. (4) channel model.

In our current work, we focus on a single-span link, because in such a case the nonlinearity-
aware constellation shaping is expected to produce a considerable gain [35]. At the same time,
we emphasize that our method is equally applicable for other fiber-optic communication systems,
where, of course, the ultimate gain figures can be different. First, the training procedure, described
in Section 2.5, was successfully applied in [33] to E2E learning the constellation shaping for the
AWGN channel. The obtained results agreed with the analytical predictions for AWGN channel
[58]. Particularly, the learned PS matched the performance of the "optimal" MB shaping Eq. (1),
while the learned combination of PS and GS slightly outperformed MB, thanks to better ability
to approach the truly optimal continuous Gaussian input symbol distribution. Second, in [36]
the similar E2E learning technique was successfully applied to train the geometric constellation
shaping and the nonlinear pre-distorter for the 64 GBd transmission over the long-haul 30x80 km
(2400 km) SMF link.

Nonetheless, we expect the proposed E2E learning algorithm to reap smaller performance
gains over MB shaping Eq. (1) in the links with bigger numbers of spans or co-propagating
channels. We attribute it to the weakening of the overall gain obtainable by a nonlinearity-aware
constellation shaping with the increase in link length [35] or number of co-propagated channels
[59]. The channel distribution pY |X in these testcases becomes more a Gaussian-like [47], for
which MB shaping is optimal.

3.2. RP model channel approximation precision

We start from showing that RP model, despite being a simplified one, offers a decent approximation
of the precise SSFM model. For the testcase, considered in this paper, we compared how do RP
and SSFM models simulate the propagation of unshaped 256-QAM signal. In Fig. 4, first, we plot
the signal-to-noise ratio (SNR) of the received signals after the chromatic dispersion compensation
(CDC) was applied. One can see that the SNR is nearly the same for both the SSFM and RP
models in the weakly nonlinear regime (up to 10 dBm), and, most notably, the correspondence is
still good around the optimal launch power level of Popt ≈ 10 dBm. To demonstrate that this
SNR-value-similarity comes directly from RP model correctly approximating the deterministic
nonlinear distortions introduced by SSFM, we compared the outputs of the models in the
noiseless scenario: we fed the same input signal to both models, while they injected no ASE
noise, i.e. only the deterministic effects were considered. We quantified the difference between
the outputs of RP YRP and SSFM YSSFM in terms of signal-to-distortion ratio (SDR), defined
as −20 log10 (∥YSSFM∥/∥YRP − YSSFM∥), also added to Fig. 4(b). We see there that up to the
launch power of 10.5 dBm, SDR is at least 20 dB larger than the SSFM-modelled received
SNR. This indicates that the approximation error of the RP model is much smaller than the total
distortion in the link. To sum up, from Fig. 4 we readily see that the RP model renders a very



Research Article Vol. 31, No. 1 / 2 Jan 2023 / Optics Express 13

good channel approximation for the case considered, and the deterministic mismatch between the
models cannot noticeably affect the E2E system training.

Fig. 4. Comparison between channel models based on first-order regular perturbation
(RP) and split-step Fourier method (SSFM) approximating the 64 GBd single channel
dual-polarised transmission of unshaped 256QAM signal over 1x170 km SMF link.

3.3. Learning the constellation shaping without pre-distorter

Once we have tested the accuracy of the RP model, we turn to the results of the E2E learning the
constellation shaping.

In the first case, we consider learning the constellation shaping in a link without a pre-distorter,
i.e. it was disabled and we learnt only PS and GS of separate symbols. This option is well
suited for the use cases when there is no opportunity to implement a separate pre-distorter at the
transmitter, typically, because of the limited complexity and/or power budget.

Before training, we initialized the encoder with a MB-shaped 256QAM constellation, defined
in Eq. (1). To find the MB shaping parameter θ we, first, initialized the constellation as an
unshaped 256QAM one and recorded the SNR produced by this constellation between the input
and output of the auxiliary channel model. The MB shaping parameter θ was chosen as to have
the optimal value for the AWGN channel, producing the same SNR level. The MB constellation
with the θ parameter value found in this way was used as a starting seed for all the following
learning of constellation shapings and its performance was used as a reference one.

We did the two types of constellation shaping learning. In the first experiment, we learnt just
the PS. This is a preferable case for the links, where introducing the GS is not favored. The
benefit of PS is that, while providing the performance gain, it keeps the square grid of QAM
constellation intact (see Fig. 6(b)). Having the square grid of the transmitted constellation allows
one to use the cost-effective blind DSP algorithms to recover the signal at the receiver [60] and
lower the required precision of a digital-to-analog converter at the transmitter by limiting the
range of signal powers along I- and Q- component present in the transmitted signal. In the second
experiment, we jointly learnt the PS and GS to highlight the full single-symbol joint shaping (JS)
gains reachable by the E2E learning strategy. For the PS, the training started from the reference
MB shaped constellation. Then, the PS, learnt at the first stage, was used as an initial seed for the
JS E2E learning.

The whole training procedure: constellation initialization as the MB-shaped one, learning
the PS, and learning the JS, was done separately for a range of launch power levels. Figure 5
showcases the performance achieved by these shaped constellations in a validation SSFM
simulation. The learnt PS (E2E-PS-256QAM) resulted in the 0.043 bits/2D-symbol/pol BMI
gain on top of MB-shaping, and led to ≈ 0.25 dBm increase in optimal power level. The learnt JS
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(E2E-JS-256) including both PS and GS, led to nearly doubling the performance gain: it resulted
in 0.074 bits/2D-symbol/pol BMI gain on top of MB-shaping.

Fig. 5. The performance of the constellation shaping without pre-distortion: the refer-
ence Maxwell-Boltzmann (MB-256QAM) shaping, learnt probabilistic shaping (E2E-PS-
256QAM), and the learnt joint probabilistic and geometric constellation shaping (E2E-JS-
256).

(a) MB-256QAM (b) E2E-PS-256QAM (c) E2E-JS-256

Fig. 6. Constellations applied at the optimal power level for the case of the link without
nonlinear pre-distortion.

The better performance of learned constellations can be partly explained by the fact that they
produce a higher effective SNR in the link. Figure 7(a) shows that the effective SNR of the
learned JS is higher than that of the reference MB shaping. Furthermore, we can quantify the
difference between the constellations, leading to different SNR values. The extended Gaussian
noise (EGN) model [47] suggests that the SNR of a signal propagated over a non-linear channel
depends on the constellation and is inversely proportional to its 4th µ4 and 6th µ6 standard
moments, where the k-th standard moment µk of the input symbol sequence X is defined as

µk[X] =
E

[︁
|X − E[X]|k

]︁(︁
E

[︁
|X − E[X]|2

]︁ )︁k/2 (26)

and E[·] stands for the expectation value. Indeed, Figs. 7(b), 7(c) show that µ4, µ6 moments of
the E2E learnt JS are lower than the ones for the MB constellation. Furthermore, the difference
in SNR, and µ4, µ6 moments, increases with the rise of the launch power, when the nonlinear
distortions strengthen.
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Fig. 7. The comparison between the metrics of reference Maxwell-Boltzmann 256QAM
(MB-256QAM) and the E2E learnt JS (E2E-JS-256) constellations.

3.4. Learning the cost-effective pre-distorter via end-to-end learning

Once we have considered the single-symbol conventional constellation shaping, we move to the
more advanced case of memory-aware shaping, i.e., the shaping when the transmitted symbol
depends not only on the message transmitted in the corresponding time slot, but also on the
messages transmitted in the neighbouring slots. To be effective, a constellation shaping should
take into account the symbols co-propagating in the neighbouring slots, since they contribute to
the deterministic nonlinear distortions introduced into the transmitted symbol of interest. We
name this approach as the multi-symbol constellation shaping (MSCS).

Thankfully, the RP-based auxiliary channel model, Eq. (4), implemented into the E2E learning
algorithm proposed in this work, allows the E2E learning of MSCS, since the RP introduces inter-
symbol deterministic nonlinear distortions. Conversely, the EGN-based auxiliary channel model
[47], suggested in previous works for end-to-end learning the coherent optical communications
[19,45], does not support the MSCS learning: the EGN replaces the actual inter-symbol nonlinear
distortion with the symbol-independent Gaussian noise and, therefore, prevents the E2E learning
of dependencies between the neighbouring symbols.

We propose the MSCS implementation as a combination of single-symbol JS, described in
the previous subsection, and the nonlinear PPD-based pre-distorter, Eq. (2), jointly trained in
a single run of E2E learning. Before considering the MSCS training as a whole, we focus on
the E2E learning for the cost-effective pre-distorter. We note that it is important to reduce the
complexity of pre-distorter, inasmuch as its complexity defines the additional costs of MSCS
implementation over the single-symbol JS, and, therefore, denominates the feasibility of the
whole MSCS implementation.

As mentioned in Sec. 2.2, the PPD-based pre-distorter performance-to-complexity ratio is
defined by the range of nonlinear perturbation terms Tm,n. An effective way to set it is by keeping
in the algorithm only the terms Tm,n for which the corresponding coefficient |Cm,n | has the
absolute value above the fixed cut-off threshold: |Cm,n |>Ccutoff. We refer to this approach as the
pre-distorter pruning, in analogy with the similar technique from neural networks optimization
[61].

We seek to find the optimal Ccutoff value by a grid search. First, we loaded the unshaped
256QAM constellation to the sampler, and the constellation sampler from E2E learning. Then
we trained the PPD with the range of coefficients |m|, |n| ≤ 10, and pruned it with the range of
various cut-off values Ccutoff. We measured the performance of the generated family of E2E learnt
pre-distorters on the precise SSFM channel model. The dependence of the link performance with
the various pruned PPD, on the share of pruned coefficients Cm,n, is given in Fig. 8. The figure
shows that when we keep around 25% of the most significant PPD terms Tm,n, adding the new
ones leads to the negligible improvement in resulting algorithm’s performance. This pruning
scheme will be used in the following MSCS learning.
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Fig. 8. The dependence of the performance of pruned indirectly learned perturbation-based
pre-distorter (PPD) with |m|, |n| ≤ 10 on the margin of the most significant Cm,n coefficients
non-zeroed during the pruning procedure. The PPD training was done on the RP model,
while the performance was measured in precise SSFM simulation. Inset: The distribution of
PPD coefficients Cm,n learned and pruned with the cut-off leaving 25% of the coefficients.

Notably, the distribution of the learnt PPD coefficients |Cm,n | agrees with the approximation
suggested in [62], implying that |Cm,n | ∼ 1/|mn|. The inset of Fig. 8 shows the distribution of
the absolute value of coefficients |Cm,n | in the aforementioned indirectly trained PPD with 25%
coefficients left.

3.5. Learning the memory-aware constellation shaping

We have defined the cost-effective perturbation-based pre-distorter (PPD) in the previous
subsection, and now we consider the E2E learning of the MSCS enabled by the pre-distorter.
The MSCS estimates the performance gains reachable by the proposed E2E learning algorithm,
when no complexity-limiting constraints are put on it. The set of non-pruned triplets Tm,n,
defined during the PPD initialization, was kept fixed during the following E2E learning. After
the initialization, we simultaneously optimized the PPD with joint probabilistic and geometric
single-symbol constellation shaping, thereby arriving at the MSCS shaping.

The pre-distorter initialization followed by the E2E MSCS learning was done separately
for a range of launch powers. The performance of the resulting learnt constellation measured
on the precise SSFM channel model is given in Fig. 9. For comparison, we also plotted the
performance of the single-symbol constellation shapings learnt in Sec. 3.3: MB-256QAM
and E2E-JS-256. Compared to the reference MB constellation shaping, the MSCS led to the
considerable improvement in the system’s BMI, adding 0.47 bits/2D-symbol/pol., and the optimal
power level moved up by ≈ 1.25 dBm.

To clarify the reason for the superior MSCS performance, we separately considered its
contributing factors: PPD and fine-tuning the JS. To do this, we compared the performance of
MSCS, involving the simultaneous training of JS and PPD, with the PPD trained on top of fixed
pre-learnt single-symbol E2E-JS-256 (E2E-JS-256 + PPD). In the latter case, the constellation
shaping isn’t by affected by the presence of PPD in the link, which allows us to isolate the
performance gains of PPD. The results of this separate E2E learning are given in Fig. 9. Notably,
PPD is found to be the main contributor to the MSCS performance: training the PPD on top of
fixed JS already brought 0.39 bits/2D-symbol/pol BMI gain, while E2E learned MSCS brought
only 0.012 bits/2D-symbol/pol BMI gain on top of this. Despite this result provides a valuable
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Fig. 9. The performance of the end-to-end learnt multi-symbol constellation shaping
(E2E-MSCS-256). For reference, we added here the performance of Maxwell-Boltzmann
(MB-256QAM), learnt JS (E2E-JS-256), and the nonlinear perturbation-based pre-distorter
trained on top of the fixed E2E-JS-256 constellation (E2E-JS-256 + PPD).

insight into the reasons for the performance of the MSCS, we consider it necessary to conduct a
detailed study analysing different link testcases and deep learning hyperparameter values before
making any sound conclusions. This study is left beyond the scope of this work.

4. Conclusion

The end-to-end learning of the optical coherent detection communication system offers a
possibility to specialize the characteristics of the transmitted signal to the properties of the
nonlinear channel. However, we underline that the two main problems are typically associated
with the E2E learning implementation.

The first problem relates to the overall complexity of modelling the channel distortions, where
the latter constitute an intricate mix of instantaneous nonlinear fiber responses intertwining with a
dispersive pulse broadening. The modelling of modern high-baudrate links is especially difficult
because of a huge dispersive memory, implying a considerable complexity and time consumption
of the split step simulations. In our work, we address this issue by proposing a parallelizable
simplified channel model based on the first-order regular perturbation [32].

The second challenge is the difficulty of introducing the concept of trainable discrete probability
distribution into the machine learning algorithm. In our paper, this problem is addressed by
adopting a novel training procedure proposed first in [33] for the AWGN channel.

The resulting composite solution, proposed and demonstrated in this work, made possible
learning the joint probabilistic and geometric shaping of symbol sequences in coherent fiber-
optic communication links. Despite the considered approach is still suboptimal, the computed
multi-symbol joint probabilistic and geometric shaping has shown a considerable bit-wise
mutual information (BMI) improvement of 0.47 bits/2D-symbol/pol over the conventional
Maxwell-Boltzmann shaping for a single-channel 64 GBd transmission over the 170 km SMF
link.

Moreover, we observed that the proposed end-to-end learning is applicable in the situations
when, because of hardware or complexity limitations, we cannot use the multi-symbol shaping.
For the same test case, we found that a single-symbol joint probabilistic and geometric shaping
gives 0.074 bits/2D-symbol/pol BMI gain over the reference MB shaping. And in the case when
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geometric shaping is not possible, the single-symbol probabilistic shaping can be used: it also
outperforms the MB shaping by 0.043 bits/2D-symbol/pol in terms of BMI.

We believe that the end-to-end learning approach, proposed in our work, can lay a path to
finding the optimal signal distribution for a variety of nonlinear fiber-optic channels.
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