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Abstract: Metaheuristic optimization algorithms (MHA) play a significant role in obtaining the best
(optimal) values of the system’s parameters to improve its performance. This role is significantly
apparent when dealing with systems where the classical analytical methods fail. Fractional-order
(FO) systems have not yet shown an easy procedure to deal with the determination of their optimal
parameters through traditional methods. In this paper, a recent, systematic. And comprehensive
review is presented to highlight the role of MHA in obtaining the best set of gains and orders for
FO controllers. The systematic review starts by exploring the most relevant publications related to
the MHA and the FO controllers. The study is focused on the most popular controllers such as the
FO-PI, FO-PID, FO Type-1 fuzzy-PID, and FO Type-2 fuzzy-PID. The time domain is restricted in
the articles published through the last decade (2014:2023) in the most reputed databases such as
Scopus, Web of Science, Science Direct, and Google Scholar. The identified number of papers, from
the entire databases, has reached 850 articles. A Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) methodology was applied to the initial set of articles to be screened
and filtered to end up with a final list that contains 82 articles. Then, a thorough and comprehensive
study was applied to the final list. The results showed that Particle Swarm Optimization (PSO) is
the most attractive optimizer to the researchers to be used in the optimal parameters identification
of the FO controllers as it attains about 25% of the published papers. In addition, the papers that
used PSO as an optimizer have gained a high citation number despite the fact that the Chaotic Atom
Search Optimization (ChASO) is the highest one, but it is used only once. Furthermore, the Integral
of the Time-Weighted Absolute Error (ITAE) is the best nominated cost function. Based on our
comprehensive literature review, this appears to be the first review paper that systematically and
comprehensively addresses the optimization of the parameters of the fractional-order PI, PID, Type-1,
and Type-2 fuzzy controllers with the use of MHAs. Therefore, the work in this paper can be used as
a guide for researchers who are interested in working in this field.

Keywords: metaheuristics; fractional-order; optimization; PID controller; fuzzy logic; PRISMA

1. Introduction

The concept of sustainability is central to preserve the natural resources and the en-
vironment. This can be accomplished by coinciding with the environment, equity, and
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economics [1]. Control systems play a crucial role in ensuring that environmental sustain-
ability is maintained over time. Accordingly, control systems are usually developed to
efficiently monitor, assess, and regulate the parameters that can influence the environmental
system’s sustainability. The applications of control systems in environmental sustainability
may include waste [2] and pollution [3]; energy consumption [4]; ventilation [5]; carbon
emissions [6]; air conditioning [7]; lighting [8]; renewable energy [9]; etc. In addition,
control systems have a significant role in ensuring sustainability in industrial processes
such as water [10] and power generators [11]. Therefore, by control systems, the use of
natural resources can be optimized and hence, environmental sustainability is maintained
and protected.

Recently, fractional-order controllers (FOCs) have gained increased interest due to
their ability to provide better control performance in comparison to integer order controllers
in many practical applications [12]. FOCs have received this significant attention because
of their ability to capture the non-linear dynamics of complex systems [13]. Furthermore,
they can be used to model complex systems that cannot be modelled using integer order
systems [14]. Therefore, FOCs can also be used to improve the performance of existing
control systems by providing better stability and faster response times.

There are several common types of FOCs. These types include fractional-order
proportional-integral-derivative (FOPID) controllers, fractional-order proportional-integral
(FOPI) controllers, fractional-order proportional-derivative (FOPD) controllers, and fractional-
order fuzzy PID (FOFPID) controllers [15]. These controllers are applied in a wide range of
engineering applications that include temperature control, motion control, process control,
etc. [16].

The design of the FOCs is not a trivial task due to the non-linear and complex nature
of the fractional-order systems. Therefore, obtaining the optimal FOCs with traditional
methods is not easy because of the non-convexity of the optimization problem involved.
This requires that the parameters of the fractional-order controllers must be adjusted
appropriately in order to improve the dynamics of the system, such as the damping factor,
natural frequency, steady-state time, and the system’s error [17].

Due to the complexity of tuning the FOCs using the classical methods, modern tech-
niques have been applied to optimize the parameters of FOCs based on various criteria
such as stability, robustness, and performance. Metaheuristics techniques are examples
of modern optimizers that have proven their efficiency in the optimization of fractional-
order controllers. These techniques utilize advanced optimization algorithms that use a
random-search strategy in their searching process. Examples of these algorithms are Genetic
algorithms (GA) [18], Simulated annealing (SA) [19], Ant colony optimization (ACO) [20],
Particle swarm optimization (PSO) [21], Gravitational swarm optimizer (GSO) [22], etc.,
rather than the classical optimization techniques such as gradient descent (GD) and least
squared estimation (LSE). They are particularly useful in tuning fractional-order controllers
because these controllers have many parameters that need to be optimized.

In this paper, a systematic as well as comprehensive review on the role of metaheuristic
optimization in the optimization of fractional-order controllers is introduced. Two types of
fractional-order controllers are introduced in this study: the PID and the fuzzy controllers.
During the study of PID controller, the PI controller is also included. Similarly, the fuzzy
controllers included both Type-1 and Type-2 fuzzy controllers. This work is prepared to
help and guide the researchers who are interested in this field. Therefore, this study focuses
on the recent articles that have been published during the last decade only. Throughout an
extensive search, around 850 articles were identified from the most popular and scientific
databases such as Scopus, Web of Science, Science Direct, and Google Scholar. Then, these
articles were filtered and screened based on the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) [23] methodology to exclude the duplicate and
irrelevant papers. Finally, around 80 articles were found to be the most relevant and
significant articles.
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The number of review papers is typically lower in comparison to the regular articles’
publications. However, there are some trials that present the use of metaheuristic optimiza-
tion techniques in optimizing fractional-order controllers. In this regard, Muresan and her
colleagues presented a study that reviews the autotuning techniques of the fractional-order
PID controllers in industrial processes [24]. They discussed some classical autotuning
methods such as the Ziegler-Nichols and the Astrom and Hagglund methods. However, all
the presented methods did not include any of the metaheuristic algorithms. Kumarasamy
et al. [25] conducted a recent review paper on the speed control of brushless DC motor
drive application. Their work presents the optimization of integer- and fraction-order
PID controllers for a specific DC motor application. Jamil et al. did a review paper on
the use of FOPID controller in a system that uses temperature control [26]. Joseph et al.
introduced a review on the MHA approaches in the tuning of FOPID controllers in open
problems [27]. Alilou et al. did a comprehensive review of the use of fractional-order
controllers in renewable energy and energy-storage-integrated power systems [28]. They
presented the most popular algorithms such as Ant Colony Optimization (ACO), PSO, Grey
Wolf Optimizer (GWO), etc., that have been used to optimize the FOPID in the application
of renewable energy. Reddy and Saha introduced a work that reviews the use of swarm-
based optimizers in tuning FOPI and FOPID in the doubly fed induction generator [29].
They showed that the most popular swarm-based algorithms are PSO, GWO, Ant Lion
Optimization (ALO), etc.

Based on our comprehensive literature review, this appears to be the first review paper
that systematically and comprehensively addresses the optimization of the parameters of
the fractional-order PI, PID, Type-1, and Type-2 fuzzy controllers with the use of MHAs.
The work in this paper can be used as a systematic guide for researchers that are interested
in working in this field. The contributions of this work can be highlighted as follows:

• A systematic review procedure that describes the relationship between the MHA and
FOCs optimization is presented;

• The searching keywords are introduced;
• The searching resources included four popular databases such as Scopus, Web of

Science, Science Direct and Google Scholar;
• The FOCs include PI, PID, Type-1 and Type-2 fuzzy controllers;
• The search domain is focused on the recent work published only during the last decade

(2014:2023);
• The popular objective functions, used in the optimization process, are presented.

The remaining of this paper is organized as follows: An overview on the classical
integer-order control systems including the classical PID and fuzzy controllers are pre-
sented in Section 2. However, their versions of fractional-order controllers are illustrated in
Section 3. Section 4 introduces an outline of the metaheuristic algorithms. The simulation
toolboxes are presented in Section 5. The methodology, followed by the results and discus-
sion, are demonstrated in Section 6, respectively. Finally, the conclusions of the work are
presented in Section 7.

2. Classical Integer-Order Control Systems
2.1. Classical PID Controller

Classical PID controllers are widely used in industrial control systems due to their
simplicity and effectiveness. PID stands for Proportional–Integral–Derivative, which are
the three components that make up the controller. The proportional component provides a
control output that is proportional to the error between the desired setpoint and the actual
process variable. The integral component integrates the error over time, which helps to
eliminate steady-state errors. The derivative component provides a control output that is
proportional to the rate of change of the error, which helps to improve the response time
of the controller [30,31]. In other words, the PID controller takes an action based on the
present (proportional), past (integral), and future (derivative) state of the system’s error.
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The control action and the transfer function of a PID controller as a function of the system’s
error can be shown as:

u(t) = KPe(t) + KI

∫ t

0
e(t)dt + KD

de(t)
dt

, (1)

U(s)
E(s)

= KP +
KI
s

+ KDs (2)

where e(t) is the system’s error; u(t) is the controller output; KP, KI, and KD are the propor-
tional, integral, and derivative parameters (controller gains), respectively.

One of the main advantages of classical PID controllers is their ease of implementation.
However, classical PID controllers have some limitations. They are not suitable for systems
with large time delays or nonlinearities, and they can be sensitive to changes in the system
dynamics [32]. Furthermore, they require manual tuning, which can be time-consuming
and may not always result in optimal performance [33].

2.2. Classical Fuzzy Controller

Fuzzy controllers have been applied in several engineering applications [34].

2.2.1. Type-1 Fuzzy Logic Controller (T1FLC)

A new era in science and technology emerged with the invention of fuzzy systems.
Credit and gratitude in the field of fuzzy sets go to Professor Lotfi Zadeh, who developed
them in the 1960s [35]. Zadeh looked at the sets from a different perspective. Instead of
using a sharp discriminator (threshold) to decide whether an instance belongs to a certain
set (class) or not, he proposed a more flexible and realistic switching operator by using
the concept of degree of membership. In this context, the classical set or the binary set is
generalized to form a fuzzy set. The former uses the degree of membership, µ, as a binary
number in the set {0, 1} however, the latter considers it as [0 1]. Accordingly, this new
strategy proposes that, for any instance in a set, it is possible to accept a partial degree of
belonging to a certain set with a membership value between 0 and 1, i e., 0 ≤ µ ≤ 1. This
inequality implies that µ = 1 denotes the fully belonging state and that µ = 0 denotes
the unbelonging state. These two states are the same as the classical set when using a
crisp threshold.

The idea of fuzzy sets has helped create a new science with its own logic, variables,
reasoning, mathematics, operators, systems, etc. For example, fuzzy logic uses MIN and
MAX operators instead of AND and OR in Boolean logic, respectively. In the following, the
structure of the fuzzy system and its main components will be introduced.

Structure of Type-1 Fuzzy Logic Controller

To use fuzzy systems for processing the inputs data until obtaining the final output
value, some operations have to be executed. The fuzzy system is composed of three main
components: Fuzzifier, Inference Engine, and Defuzzifier, as shown in Figure 1.

Fuzzifier

The first operation in a fuzzy system is the one that is responsible for transforming
(mapping) the values of the inputs from its crisp values to fuzzy values. This mapping
process is done through a predefined membership function (MF). Usually, the MF is a
convex function that maps the inputs to a limited range in the period [0 1]. The input’s
domain of discourse can be classified into more than one MF depending on the problem
that is under investigation. The Gaussian, triangular, and trapezoidal are examples of fuzzy
MFs [36].
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Rule-Base

The rule-base contains the fuzzy rules that govern the relation between the system’s
outputs and the inputs. Regardless of the type of fuzzy rule, it takes the form of the IF-
THEN structure [37]. There are two types of fuzzy rules. However, the choice of either type
is problem dependent. The two forms of fuzzy rules are the Mamdani-type [38] and the
Sugeno-type [39]. The rule structure, based on the two types, of a two-input single-output
system, is as follows:

IF a is α and b is β THEN c is γ, (Mamdani-type)
IF a is α and b is β THEN c = f (a, b), (Sugeno-type)

where a and b are the two inputs of the system; α and β are two arbitrary membership
functions that are associated with the inputs a and b, respectively; c is γ are the output and
its MF, respectively; f (a, b) is a mathematical linear/nonlinear function of the inputs.

The fuzzy rules are usually generated either based on a systems expert or a clustering
algorithm of the dataset.

Inference Engine

In this process, the IF-THEN rules are fired to infer their outputs given a certain set
of inputs. Particularly, the output of each rule is obtained using the implication method.
There are many techniques to apply the implication method. However, the most widely
used is the Min (Intersection) operation [40].

Defuzzifier

As soon as the rules are fired, the entire rules’ outputs are aggregated together to
end up with a single output value. In Mamdani-type fuzzy rule, the rule’s output has a
fuzzy value. In this case, the Max (Union) operation is applied. On the other hand, in
Sugeno-type fuzzy rule, the weighted average is used to produce the final output [41].

2.2.2. Type-2 Fuzzy Logic Controller (T2FLC)

Type-2 Fuzzy Logic Controller is an extension of the traditional or Type-1 fuzzy logic
controller [42]. It was proposed to handle the uncertainties and vagueness that are present
in real-world systems [43]. Unlike Type-1 fuzzy sets, which have a single membership
function for each input variable, Type-2 fuzzy sets have multiple membership functions
at different levels of uncertainty. The principal difference between the Type-2 and Type-1
fuzzy logic controllers lies in the definition of membership functions for a certain variable.
Type-2 FLC uses two membership functions to define the fuzzy value of a variable; the
upper and lower MFs. Hence, the fuzzy value is represented by an interval instead of a
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single value. Figure 2a,b show examples of Type-1 and Type-2 fuzzy membership functions,
respectively. The MFs in Figure 2 represent the system’s error and the change of error,
which are the most popular inputs to the fuzzy controller. The regions in-between the
upper and lower MFs define the footprint of uncertainty (FOU) [44]. However, Figure 3
shows the components of the Type-2 fuzzy logic controller.
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The main advantage of using a Type-2 Fuzzy Logic Controller is its ability to handle
more complex systems by accounting for higher-order uncertainty [45]. This means that it
can perform better when dealing with noisy data or when there is incomplete knowledge
about the system being controlled.

However, the downside of using Type-2 Fuzzy Logic controllers is their increased
computational complexity and difficulty in tuning due to their additional parameters. In
addition, they require more training data than Type-1 controllers because they rely on
interval-valued membership functions rather than crisp values. Furthermore, an extra
Type-Reducer block is added to the fuzzy processes to perform the Type-2 fuzzy system, as
shown in Figure 3. Therefore, the block diagram that represents the PID controller based
on the T2FLC is shown in Figure 4.
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3. Fractional-Order Systems

The origin of fractional-order derivatives first appeared in the 17th century when the
French mathematician Guillaume de L’Hôpital asked the German mathematician Gottfried
Leibniz about a particular notation in his publications for the nth-derivative, dnx

dxn , of the
linear function f (x) = x. L’Hôpital postulated an amazing question: what will be the
derivative of f (x) if n = 0.5? Despite the concept of fractional order originating in 1695 [46],
the use of fractional-order control systems only started to gain a significant interest in
1945 [47]. Many attempts have been conducted in the direction of finding a concrete
solution to the L’Hôpital postulation. Each one of these attempts has its mathematical
formulation and definition towards the final solution.

The Grünwald–Letnikov (GL), Riemann–Liouville (RL), and Caputo are the most
commonly used definitions of the fractional derivative/integral in fractional calculus.
Their mathematical expressions for the fractional-order derivative/integral with a posi-
tive/negative fractional number β to a function f (t) can be shown as [48]:

aDβ
t = lim

h→0

1
hβ

[ t−a
h ]

∑
k=0

(−1)k
(

β
k

)
f (t− kh) (3)

where
[ t−a

h
]

is the integer part; r is the integer that satisfies r − 1 < β < r;
(

β
k

)
is the

binomial coefficient defined by
(

β
k

)
= β(β−1)...(β−k+1)

k! .

aDβ
t f (t) =

1
Γ(r− β)

dr

dtr

∫ t

b

f (τ)

f (t− τ)β−r+1 dτ (4)

aDβ
t f (t) =

1
Γ(β− r)

∫ t

b

f r(τ)

f (t− τ)β−r+1 dτ (5)

Γ(β− r) is the gamma function defined by Γ(z) =
∫ ∞

0 e−ttz−1dt and r is the integer
that satisfies r− 1 < β < r.

If the fractional-order value is positive, it denotes a differentiation operation. If it is
negative, it denotes an integration operation.

The use of fractional calculus has been extended to many applications including the
control systems engineering. In fact, fractional-order controllers (FOCs) are being widely
used by several scientists in order to reach the most robust performance of the systems.
However, the idea of using FOC for the control of dynamical systems belongs to Alain
Oustaloup and his colleagues, who developed the CRONE controller in 1991 [49]. CRONE
is an abbreviation of “Commande, Robuste d’Ordre Non Entier” which stands for “non-
integer order robust control”. The pioneer studies in this topic were done by Axtell and
Bise [50], Bagley and Calico [51], Makroglou et al. [52], Podlubny [53], Matignon [54],
and Matignon and d’Andréa-Novel [55], which provided very interesting ideas for the
utilization of fractional derivatives in control theory and fractional-order control systems.
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3.1. Fractional-Order PID Controller

Fractional-order PID controllers have gained significant attention in recent years due
to their ability to provide better control performance compared to traditional integer-order
PID controllers [56]. These controllers are based on fractional calculus, which allows for the
use of non-integer orders of differentiation and integration. One of the main advantages
of fractional-order PID controllers is their ability to provide better control performance in
systems with non-linear dynamics. Traditional integer-order PID controllers are limited in
their ability to handle non-linear systems, which can result in poor control performance.
Fractional-order PID controllers, on the other hand, can handle non-linear systems more
effectively due to their ability to capture the memory effects, which is represented by
the order of the derivative of the system [57]. This results in better control performance
and improved stability [58]. The FO proportional–integral–derivative (FOPID) controller
is a generalized controller of conventional PID. It offers superior response and more
stability compared to conventional PID. However, determining the parameters of FOPID is
a dilemma [59]. Five parameters need to be identified, instead of only three in the case of
conventional PID. Consequently, several tuning approaches have recently been established
to determine the parameters of FOPID [59].

FOPID is an application of the utilization of fractional calculus in control systems
engineering. In FO, the PID controller’s transfer function is updated to include two extra
parameters for the derivative and integral terms. These parameters are the µ and λ, which
represent the FO derivative and integral, respectively, and can be shown as [60]:

U(s)
E(s)

= KP +
KI

sλ
+ KDsµ (6)

where λ and µ are the two positive real numbers.

3.2. Fractional-Order Fuzzy Controller

The use of fractional-order systems is extended to many engineering fields includ-
ing automatic control systems. Therefore, many researchers in the control engineering
discipline are interested in using FO in their applications [14,15,61,62].

3.2.1. Fractional-Order Type-1 Fuzzy Controller

A block diagram that describes the configuration of a feedback system that uses the
Fractional-Order Type-1 Fuzzy (FOT1FPID) as the main controller is shown in Figure 5.
It can be seen in Figure 5 that the two inputs to the fuzzy controller are the error and the
change-of-error to simulate the PD control action. Then, the output of the controller is
integrated to produce the final PID control action. For better performance, all the gains (KP,
KD, KPD, and KPI) and the FO parameters (λ and µ) have to be adjusted appropriately.
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3.2.2. Fractional-Order Type-2 Fuzzy Controller

The block diagram that describes the configuration of a feedback system that uses the
Fractional-Order Type-2 Fuzzy (FOT2FPID) as the main controller is shown in Figure 6.
In addition, the two inputs to the fuzzy controller are the error and the change-of-error,
which is the same as the FOT1FPID. Similarly, all the gains (KP, KD, KPD, and KPI) and the
FO parameters (λ and µ) have to be adjusted appropriately to obtain a better performance.
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It can be seen that the use of FOT2FPID is the same as the FOT21FPID. However, in
FOT2FPID, the formulation of the fuzzy membership function is different, as seen in
Figure 2. Furthermore, the processing of fuzzy variables is a little bit different due to the
Type-Reducer, as illustrated in Figure 3.
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4. Metaheuristic Algorithms (MHA)

Optimization refers to the process of finding the best (maximum/minimum) value
from a set of possible solutions to a specific function, with the objective of achieving a
specific goal. This goal is to either maximize or minimize the objective function depending
on the nature of the problem under investigation. In particular, if the objective function
denotes the cost function in this case the target is to minimize this cost. However, if the
objective function denotes the benefit function, the goal is to maximize it. In this regard,
every function that has peaks or valleys or both can be examined to search for the locations
of peaks (maxima) or valleys (minima). The function is classified as unimodal if and only if
it has only a single peak or a single valley. However, the function is considered multimodal
if it has many peaks and valleys. The highest peak and the lowest valley are known as
the global maximum and minimum, respectively. In the same context, the other peaks
and valleys are the local maxima and minima, respectively. As most of the optimization
algorithms are defined and programmed as minimization problems, in this paper the word
“optimization” is meant by “minimization” and vice versa. Therefore, the constrained
optimization problem can be formulated as shown below:

arg
X∈R

min( f (X)) (7)

Subject to:
g(X) ≤ a (8)

h(X) = b (9)

where f (X) is the cost (objective) function; X = [x1, x2, x3, . . . , xn] is the vector of controlling
inputs of dimension n with L ≤ X ≤ U, where L and U are the lower and upper bounds of
the inputs, respectively.

Equations (8) and (9) describe the inequality and equality constraints of the optimiza-
tion problem, respectively; a and b are constants.

It is worth mentioning that the same form of Equation (7) can be adopted for the case
of maximization problems by simply multiplying the cost function by −1. Consequently,
the optimization problem can take the form shown below:

arg
X∈R

min(− f (X)) (10)

There are many techniques and procedures to apply the optimization process. The
classical one is to use analytical methods that are based on differential calculus such as
the gradient descent (GD) procedure which is useful for continuous and differentiable
functions [63]. Unfortunately, this procedure fails when the mathematical expression of
the function (model) to be optimized does not exist specifically for black-box models.
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Furthermore, the main drawback of using the classical GD technique is the possibility of
falling into local minima, which is known as the premature convergence problem. This
problem occurs as the solution obtained by the GD is sensitive to the initial values of
the proposed solutions. On the other hand, modern optimization techniques such as
metaheuristic algorithms (MHAs) can tackle these kinds of problems by using a controlled
stochastic search instead. These types of searching algorithms are controlled via tuning
some parameters to guarantee and accomplish the two targets of the optimization process,
which are the accuracy and speed of obtaining the optimal solution. MHA refers to
an iterative procedure to develop an optimization algorithm for a high-level problem-
independent framework [64,65].

The No-free-Lunch (NFL) principle opens a significant window for researchers to be
able to propose new optimizers. Based on this principle, the route for developing new
algorithms is unlimited [66,67]. Accordingly, this endless path allows many new optimizers
to be introduced every year.

In this review paper, a spotlight has been focused on the relationship between the
MHA and the fractional-order controllers’ design which can be taken as a guide to the
researchers in the engineering sector.

4.1. History of MHA

In fact, many developments have been established since metaheuristics have been
first appeared to improve the entire performance. These improvements include either the
development of new algorithms or the enhancements of already established algorithms.
The timeline figure that describes the historical development of metaheuristic algorithms
is illustrated in Figure 7 [68]. The timeline of the progress of metaheuristics is illustrated
in Table [64]. It is worth mentioning that as of 2022, over 540 optimizers have been
developed, each with different classifications [69]. Table 1 presents a detailed description
of the metaheuristic algorithms and their historical timeline developments.
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Table 1. The detailed description of the metaheuristic algorithms and their timeline.

Timeline Description

1953s George Dantzig and others develop the simplex algorithm, one of the first optimization algorithms for linear
programming.

1950s–1960s Researchers begin developing stochastic optimization algorithms, such as Monte Carlo methods and
simulated annealing, that use probabilistic techniques to find good solutions.

1960s–1970s Evolutionary algorithms, inspired by the principles of natural selection, are developed by researchers such as
John Holland and Ingo Rechenberg.

1980s Genetic algorithms, a type of evolutionary algorithm, gain popularity as a means of solving optimization
problems.

1990s Swarm intelligence approaches, such as particle swarm optimization and ant colony optimization, emerge as a
new class of metaheuristics that are based on the collective behaviour of simple agents.

1990s–2000s Local search-based metaheuristics, such as tabu search and variable neighbourhood search, become popular
for solving combinatorial optimization problems.

2000s–present
Hybrid and multi-objective metaheuristics gain popularity, as researchers seek to combine different classes of
metaheuristics or combine metaheuristics with other optimization techniques to improve their performance on
a wide range of problems.

4.2. Classifications of MHA

There are several types of metaheuristic algorithms, each of which has its own
strengths and weaknesses. One type of metaheuristic algorithm is the evolutionary algo-
rithms, which is based on the principles of natural selection and genetic recombination.
Another type of metaheuristic algorithm is swarm intelligence, which is inspired by the
collective behaviour of groups of simple agents. Examples of swarm intelligence algorithms
include particle swarm optimization and ant colony optimization. Local search-based meta-
heuristics, such as tabu search and variable neighbourhood search, are another type of
metaheuristic algorithm that iteratively improves a solution by exploring its neighbour-
hood. Finally, hybrid metaheuristics combine different types of metaheuristic algorithms or
combine metaheuristics with other optimization techniques to improve their performance
on specific types of problems. Each type of metaheuristic algorithm has its own strengths
and weaknesses and can be applied to a wide range of optimization problems. In addition,
the MHs can be classified according to the nature of obtaining the final solution either
through a single or population-based strategies. In the single-solution-based strategy,
the solution is randomly generated and improved iteratively until the final best result is
obtained. On the other hand, the population-based solution strategy uses a set of initial
random solutions. These solutions are hence updated iteratively until the optimal solution
is reached among the entire set [68]. Examples of single solution-based algorithms include
Tabu search, Simulated annealing, Local search, and Iterated local search. However, both
the Evolutionary algorithms (EA) and the swarm intelligence (SI) algorithms are classified
as population-based algorithms. Examples of EA algorithms include the GA and DE.
However, the PSO, Firefly, Ant colony, Bee colony, and Bat algorithm are examples of SI
algorithms. Therefore, MHA are classified into several categories [70,71]. This is because
many criteria are applied. However, the popular classification criteria are based on the
nature of inspiration, the population size and the updating mechanism. Figure 8 shows
the popular taxonomies of metaheuristic algorithms. The most popular and widely used
algorithms are of the EA and SI types. Therefore, the following section will provide a brief
introduction to the SI class, which is the most popular one, along with examples.
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4.2.1. Swarm-Based Algorithms

Swarm-based optimization algorithms are a group of algorithms that are inspired
by the collective behaviour of animals or insects that exhibit swarm intelligence. These
algorithms have gained a lot of interest in the field of optimization since they are capable
of finding near-optimal solutions quickly. The basic idea behind these algorithms is to
simulate the behaviour of the dynamic behaviour of a group of particles that interact with
each other as they search for an optimal solution.

Common examples of swarm-based optimization algorithms include Particle Swarm
Optimization (PSO), Ant Colony Optimization (ACO), and Artificial Bee Colony (ABC).

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based stochastic optimization
technique that mimics the behaviours of birds flocking or fish schooling. In this algorithm,
a group of particles move around in the search space, and each particle adjusts its direction
and speed based on the positions of particles in its neighbourhood [72].

Particle Swarm Optimization (PSO) is a variant of the SI algorithms that mathemat-
ically simulates the movement of a flock of birds. The main idea of the algorithm is to
generate a list of candidate solutions and aim for one of these solutions to reach the global
best (minimum/maximum) position within the search-space. In PSO, these solutions are
defined as particles and the best solution is the one that has grasped the best position [73].
Further descriptions about the PSO theory and its application can be found in Refs. [21,73].
The optimization procedure starts by setting the number of particles, N; maximum number
of iterations, M; and the upper and lower values of the controlling variables, U and L,
respectively. The initial N solutions are generated according to Equation (11).

pi,d = Li,d + ri,d(Ui,d − Li,d) (11)

where pi,d, Li,d, ri,d, and Ui,d are the location of particle, lower value, random variable and
upper value of the ith particle in the dth dimension.

Then, the particles’ locations are updated iteratively. The updating rule, related to the
ith particle in the swarm in an iteration t, for the velocity vt+1

i and position pt+1
i can be

shown as [74,75]:
pt+1

i = pt
i + vt+1

i (12)

vt+1
i = w× vt+1

i + C1 × R1 ×
(

pt
pBest − pt

i

)
+ C2 × R2 ×

(
pt

gBest − pt
i

)
(13)
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The weight of inertia is denoted by w, which varies iteratively from 1 to 0.4 throughout
the optimization process. However, the pt

pBest and pt
gBest represent the local best and the

global best values, respectively. The local experience weight and the global experience
weight are denoted by the two constants C1 and C2, respectively. R1 and R2 are two
stochastic variables that vary in the range [0 1]. The flowchart describing the updating
mechanism of the PSO is illustrated in Figure 9.
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Figure 9. Flowchart describing the PSO updating mechanism.

4.3. Objective Function

The most popular performance indices used as objective functions are the Integral
Absolute Error (IAE), Integral Squared Error (ISE), Integral of the Time-Weighted Absolute
Error (ITAE), Integral of Time multiplied by the Squared Error (ITSE). All of the above
functions are required to be minimized to obtain the best performance for the system. In
other words, to minimize the error signal throughout the entire simulation time, ts, to
minimize the overshoots and settling time accordingly. The formulas of IAE, ISE, ITAE, and
ITSE can be shown as:

ISE =
∫ ts

0
(e(t))2dt, (14)

IAE =
∫ ts

0
|e(t)|dt, (15)

ITAE =
∫ ts

0
t|e(t)|dt, (16)

ITSE =
∫ ts

0
t(e(t))2dt. (17)
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4.4. Simulation Toolboxes

The optimal parameters of the controller can be obtained by applying an appropriate
optimizer. To accomplish this task, a simulation toolbox must be used. An example of the
block diagram that illustrates the configuration of the optimizer and the T2FOFPID system,
in an optimization process, is presented in Figure 10. The figure illustrates that the input
to the optimizer is the system’s error, e(t) and its output is the set of optimal parameters
of the controller, i.e., the gains and the fractional-orders. The optimizer uses the error and
computes one of the considered objective functions shown in Equations (14)–(17).
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Figure 10. The block diagram representing the optimization process of T2FOFPID.

When simulating a FOPID controller, several analytical tools can be used. The popular
tools are commonly utilized within the MATLAB software environment.

4.4.1. FOMCON Toolbox

In 2013, Tepljakov et al. implemented the Fractional-order Modelling and Control
toolbox, FOMCON, which worked under the framework of MATLAB to handle FOPID con-
trollers [76]. The link to download FOMCON is provided below [77]: https://www.math
works.com/matlabcentral/fileexchange/66323-fomcon-toolbox-for-matlab?s_tid=srchtitl
e (accessed on 1 June 2023).

4.4.2. FOTF

Xue et al. developed the fractional-order transfer function (FOTF) [78]. The FOPID
controller block can work in the Simulink toolbox and is able to use the optimization
method to tune the controller. The code for FOTF can be obtained from Ref. [79]. https:
//www.mathworks.com/matlabcentral/fileexchange/60874-fotf-toolbox (accessed on 1
June 2023).

4.4.3. Ninteger Toolbox

In 2005, Valerio and Costa developed the script of Ninteger MATLAB code [80]. The
source code is available and can be downloaded from the MathWorks website from the
following [81]: https://www.mathworks.com/matlabcentral/fileexchange/8312-nintege
r?s_tid=srchtitle (accessed on 1 June 2023).

4.4.4. CRONE

Oustaloup et al. [49] developed the CRONE toolbox for engineers and researchers to
deal with FO systems. The link to download the CRONE software can be shown below
(Note: Registration is required with a professional email address) [82]: http://archive.im
s-bordeaux.fr/CRONE/toolbox/pages/accueilSITE.php?guidPage=home_page (accessed
on 1 June 2023).

https://www.mathworks.com/matlabcentral/fileexchange/66323-fomcon-toolbox-for-matlab?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/66323-fomcon-toolbox-for-matlab?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/66323-fomcon-toolbox-for-matlab?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/60874-fotf-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/60874-fotf-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/8312-ninteger?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/8312-ninteger?s_tid=srchtitle
http://archive.ims-bordeaux.fr/CRONE/toolbox/pages/accueilSITE.php?guidPage=home_page
http://archive.ims-bordeaux.fr/CRONE/toolbox/pages/accueilSITE.php?guidPage=home_page
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5. Methodology

To accomplish the target of this review paper, a systematic methodology was first
applied by collecting the related papers from the popular databases according to the items
shown in Table 2.

Table 2. Keywords used in the search process.

Item Description

Main searching keywords Factional order; PID; Fuzzy; Controller;
Optimization

Date Range 2014–2023

Databases Scopus (SC); Web of Science (WOS); Science
Direct (SD); Google Scholar (GS)

Using the data listed in Table 2, a searching criterion was applied to every database ac-
cording to its appropriate searching formula. Synonyms for each keyword were employed
using the OR logical operators, as shown in Table 3. The searching formulas used for each
database are presented in the following subsections.

Table 3. The keywords and their synonyms.

Keyword Synonyms

Factional order FO OR fractional-order

Optimization optimal OR swarm OR tuning OR
metaheuristic

5.1. Scopus

The searching criterion used with the Scopus database is as follows:

“TITLE (((PI OR PID OR fuzzy) AND controller) AND (“factional order” OR “fractional-
order”) AND (optimization OR optimal OR swarm OR tuning OR metaheuristic)) AND
(LIMIT-TO (PUBYEAR, 2023) OR LIMIT-TO (PUBYEAR, 2022) OR LIMIT-TO
(PUB/YEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR,
2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR LIMIT-
TO (PUBYEAR, 2014))”.

A screenshot of the search criterion of fractional-order controllers on the Scopus
database is shown in Figure 11.
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5.2. Web of Science (WOS)

A screenshot of the search criterion of fractional-order controllers on the WOS is shown
in Figure 12.
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5.3. Science Direct

The following searching criterion was used with the Science Direct (SD) database:

“(PI OR PID OR fuzzy) AND controller AND (“factional order” OR “fractional-order”)
AND (optimization OR optimal OR swarm OR tuning OR metaheuristic)”.

5.4. Google Scholar

The following searching criterion was applied in the title field on the Google Scholar
(GS) database:

“allintitle: PID controller optimization OR optimal OR swarm OR metaheuristic OR tuning
“fractional-order”. However, the search procedure was repeated for each controller type; PI,
PID, and fuzzy. A screenshot of the search criterion of PID controller on the Google Scholar
is shown in Figure 13.
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6. Results and Discussion

The searching criteria, mentioned in the previous section, have been applied and the
numbers of papers that satisfied the searching criterion for each controller and obtained
from each database are listed in Table 4. However, the total size of identified papers is 858
articles. A PRISMA strategy was adopted in this study [23]. Accordingly, the obtained
858 articles have been filtered to remove the redundant and duplicate papers, as shown in
Table 5.

Table 4. Total number of articles extracted from the popular databases related to FO controllers.

Database Source

Controller Type Scopus Web of Science Google Scholar Science Direct Total

FO-PI 32 44 35 12 123

FO-PID 158 165 181 42 546

FO-Fuzzy 83 38 46 22 189

Total 273 247 262 76 858

Table 5. Total number of duplicate articles extracted from the popular databases related to FO
controllers.

Controller Type Initial Duplicates Remaining

FO-PI 123 49 74

FO-PID 546 241 305

FO-Fuzzy 189 80 109

Total 858 370 488

Afterward, the screening (inclusion) criterion has been applied. This criterion is as
follows: the article is included in the review list if it is recent, relevant, and cited more
than once a year. Accordingly, Table 6 shows the number of articles included in the current
review after excluding the irrelevant articles and the articles with very less citations.

Table 6. Total number of excluded articles extracted from the popular databases related to FO
controllers.

Controller Type Initial Irrelevant Excluded Included

FO-PI 74 58 16

FO-PID 305 257 48

FO-Fuzzy 109 91 18

Total 488 406 82

Figure 14 shows the PRISMA flowchart [23] of the identification, screening, and
inclusion processes. As shown in Tables 4–6, FO-PID has the highest number of published
articles, appearing to have attracted the interest of many researchers. The main reason
is that the FO-PID produced better performance in comparison to the FO-PI because the
derivative term is taken into consideration for generating the control action. The derivative
gain is useful, especially for the systems that suffer from a high percentage overshoot.
Furthermore, the FO-PID has a smaller number of tuning parameters (only five) relative to
the FO-fuzzy controller, as the latter needs at least six parameters to be tuned.
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Figure 14. PRISMA flowchart for the current systematic review [23].

It can be seen from the final list of papers that 29 optimizers have been unitized
throughout the last decade to optimize the FO controllers. The plot in Figure 15 shows the
number of published papers, throughout the last decade, for the first 16 optimizers. For
the remaining 13 optimizers, each was applied only once, so it is omitted from the plot.
All variants of every single optimizer are considered the same. The list of the addressed
optimizers is shown in Table 7 and the optimizers with less usage and citations have been
skipped from this list. From the table, it can be noticed that the PSO is the one that gained
more interest than the others, as it is applied in almost 25% of the published articles with
20 research papers out of 82.

The data of highly cited as well as recent papers that have been used the MHA in
the optimization of fractional-order PI, PID, and fuzzy controllers is listed in Tables 8–10,
respectively. By examining the data presented in the three tables, it can be noticed that
the FO-PID controller has garnered the highest level interest among researchers compared
to the others. This can be observed based on the large number of published papers, with
48 articles utilizing FO-PID as opposed to only 16 and 18 for the FO-PI and FO-fuzzy
controllers, respectively. Moreover, the work with FO-PID has high citation records in
comparison to the FO-PI and FO-fuzzy controller. This can be seen from the first records of
“Cited by” columns in Tables 8–10. The work with FO-PI controller was cited by a maximum
of 64 articles. Additionally, the work with FO-fuzzy controller was cited by a maximum of
23 articles. On the other hand, the work with FO-PID controller got 196 citation records.
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Table 7. A list of algorithms used in the recent applications for the optimization of fractional-order controllers.

No. Author Optimizer Abbreviation Year Inspiration DOI

1 Dorigo et al. [20] Ant Colony Optimization ACO 2006 Ant foraging behaviour https://doi.org/10.1109/MCI.2006.329691

2 Mirjalili [83] Ant Lion Optimization ALO 1992 Ant lion hunting mechanism https://doi.org/10.1016/j.advengsoft.2015.01.010

3 Yang and Gandomi [84] Bat Algorithm BA 2012 Echolocation behaviour of bats https://doi.org/10.1108/02644401211235834

4 Teodorović [85] Bee Colony Algorithm BCA 2009 The behaviour of bees in nature https://doi.org/10.1007/978-3-642-04225-6_3

5 Talatahari and Azizi [86] Chaos Game Optimization CGO 2020 Configuration of fractals by
chaos game https://doi.org/10.1007/s10462-020-09867-w

6 Baran Hekimoğlu [87] Chaotic Atom Search
Optimization ChASO 2019 Atomic motion in nature https://doi.org/10.1109/ACCESS.2019.2905961

7 Ibrahim et al. [88] Chaotic Harris Hawks
Optimization CHHO 2020 Hunting strategy of Harris’s

hawks https://doi.org/10.1109/ICENCO49778.2020.9357403

8 Gandomi et al. [89] Cuckoo Search Algorithm CS 2013 Breed behaviour of cuckoo
species https://doi.org/10.1007/s00366-011-0241-y

9 Abedinpourshotorban
et al. [90]

Electromagnetic Field
Optimization EFO 2016 Behaviour of electromagnets

with different polarities https://doi.org/10.1016/j.swevo.2015.07.002

10 Faramarzi et al. [91] Equilibrium Optimizer EO 2020 Mass balance models https://doi.org/10.1016/j.knosys.2019.105190

11 Yang [92] Flower Pollination Algorithm FPA 2012 Pollination process of flowers https://doi.org/10.1007/978-3-642-32894-7_27

12 Genetic Algorithm [18] Genetic Algorithm GA 1975 Evolution and natural selection
theory https://www.jstor.org/stable/24939139

13 Saremi et al. [93] Grasshopper Optimization
Algorithm GOA 2017 Food source seeking by

grasshopper swarms https://doi.org/10.1016/j.advengsoft.2017.01.004

14 Mirjalili et al. [94] Grey Wolf Optimizer GWO 2014 Hunting behaviour of grey wolf
packs https://doi.org/10.1016/j.advengsoft.2013.12.007

15 Heidari e. al. [95] Harris Hawks Optimization HHO 2019 Cooperative behaviour and
chasing style of Harris’s hawks https://doi.org/10.1016/j.future.2019.02.028

16 Geem and Kim [96] Harmony Search HS 2001 Artificial phenomenon
in musical performance https://doi.org/10.1177/003754970107600201

https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1016/j.advengsoft.2015.01.010
https://doi.org/10.1108/02644401211235834
https://doi.org/10.1007/978-3-642-04225-6_3
https://doi.org/10.1007/s10462-020-09867-w
https://doi.org/10.1109/ACCESS.2019.2905961
https://doi.org/10.1109/ICENCO49778.2020.9357403
https://doi.org/10.1007/s00366-011-0241-y
https://doi.org/10.1016/j.swevo.2015.07.002
https://doi.org/10.1016/j.knosys.2019.105190
https://doi.org/10.1007/978-3-642-32894-7_27
https://www.jstor.org/stable/24939139
https://doi.org/10.1016/j.advengsoft.2017.01.004
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1177/003754970107600201
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Table 7. Cont.

No. Author Optimizer Abbreviation Year Inspiration DOI

17 Madadi et al. [97] Improved Moth Swarm
Algorithm IMSA 2020 Behaviour of moths in nature https://doi.org/10.1016/j.envpol.2020.114258

18 Mirjalili [98] Moth Flame Optimization MFO 2015 Navigation method of moths in
nature https://doi.org/10.1016/j.knosys.2015.07.006

19 Abdel-Basset et al. [99] Modified Flower Pollination
Algorithm MFPA 2021 Pollination process of flowers https://doi.org/10.3390/math9141661

20 Ouaar and Boudjemaa
[100]

Modified Salp Swarm
Algorithm MSSA 2021 Swimming and foraging

behaviour of salps in oceans https://doi.org/10.1007/s00521-020-05621-z

21 Sulaiman et al. [101] Plant Propagation Algorithm PPA 2016 Propagation of strawberry plant Sci. Int. (Lahore), 28(1), 201–209, 2016

22 Eberhart and Kennedy
[21] Particle Swarm Optimization PSO 1995 Social movement of flock of

birds https://doi.org/10.1109/ICNN.1995.488968

23 Mirjalili [102] Sine Cosine Algorithm SCA 2016 Periodical oscillations of the
sine/cosine functions https://doi.org/10.1016/j.knosys.2015.12.022

24 Gomes et al. [103] Sunflower Optimization SFO 2019 Motion of sunflowers in
capturing solar radiation https://doi.org/10.1007/s00366-018-0620-8

25 Satapathy and Naik
[104] Social Group Optimization SGO 2016 Behaviour of humans in solving

complex problems https://doi.org/10.1007/s40747-016-0022-8

26 Dhiman and Kumar
[105]

Seagull Optimization
Algorithm SOA 2018 Migration and attacking

behaviours of a seagull https://doi.org/10.1016/j.knosys.2018.11.024

27 Seyedali Mirjalili [106] Salp Swarm Algorithm SSA 2017 Swarming behaviour of salps
(salp chain) https://doi.org/10.1016/j.advengsoft.2017.07.002

28 Yu and Li [107] Social Spider Algorithm SSA 2015 Foraging strategy of the social
spider https://doi.org/10.1016/j.asoc.2015.02.014

29 Eskandar et al. [108] Water Cycle Algorithm WCA 2012 Movements of rivers and
streams https://doi.org/10.1016/j.compstruc.2012.07.010

https://doi.org/10.1016/j.envpol.2020.114258
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.3390/math9141661
https://doi.org/10.1007/s00521-020-05621-z
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1007/s00366-018-0620-8
https://doi.org/10.1007/s40747-016-0022-8
https://doi.org/10.1016/j.knosys.2018.11.024
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1016/j.asoc.2015.02.014
https://doi.org/10.1016/j.compstruc.2012.07.010
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Table 8. Data of highly cited and recent papers that used MHA in the optimization of fractional-order PI controllers.

No. Ref * Cited by Year Optimizer # of Optimal
Variables Objective Function Value System Controlled

Variable

1 Maroufi et al. [109] 64 2019 BA - IAE 6.89 MPPT-Pitch control of a
Wind Turbine Pitch angle

2 Guha et al. [110] 63 2020 GOA 6 ITAE - Load frequency control Frequency

3 Barakat [111] 13 2022 CGO 3 ITAE - Interconnected power
systems Frequency

4 Ramadan et al.
[112] 12 2022 MFPA 3 Absolute of steady-state

error 0.015 On-grid Fuel Cell
Overshoot

Settling time
Execution time

5 Kakkar et al. [113] 10 2021 WCA 3

ITAE, absolute steady-state
error, and settling time. A

multiobjective
external optimization

(MOEO) technique
(FOMCON toolbox for

MATLAB)

- Grid-connected PWM
Rectifiers -

6 Leena et al. [114] 6 2018 SGO 3 ISE - SISO process Response

7 Maamir et al. [109] 4 2015 PSO - - - Control thermal device
(heat pump) Temperature

8 Agarwal et al. [115] 3 2015 PSO 3 ITAE 0.982009 Speed control of DC motor Speed

9 Bouderres et al.
[116] 2 2022 PSO - - - Grid-connected

photovoltaic system Voltage

10 Zamee and Won
[117] 2 2019 PPA 6 ITAE 0.2918

Grid-connected
single-stage three-phase

solar photovoltaic system
Dc link voltage

11
Hameed and
Ramasubramanian
[118]

1 2020

(ALO),
(MFO),
(WOA)
(SCA)

Case 1: 6 Case 2:
12 Case 3: 12

Case 4: 12
ITAE - Multi-area thermal power

system
Deviation in

frequency

12 Özyetkin and
Birdane [119]

0 2023 PSO - - - Numerical example Response
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Table 8. Cont.

No. Ref * Cited by Year Optimizer # of Optimal
Variables Objective Function Value System Controlled

Variable

13 Altawil et al. [120] 0 2023 SSO - ITAE - Photovoltaic system Voltage

14 Labed et al. [121] 0 2022 PSO - - - Wind turbine system Output

15 Mehmed and
Abdullah [122] 0 2022 PSO - Total harmonic distortion 1.65% Bidirectional three-phase

dc-ac power inverter Output

16 Dwivedi et al. [123] 0 2022 WCA - (MATLAB–Simulink) - Three-phase EV charger Voltage

* The number of citations listed in this table was last updated on 5 June 2023.

Table 9. Data of highly cited and recent papers that used MHA in the optimization of fractional-order PID controllers.

No. Ref * Cited by Year Optimizer # of Optimal
Variables Objective Function Value Plant Controlled Variable

1 Hekimoğlu [87] 196 2019 ChASO - ITSE 5.4978 × 10−5 Dc motor Speed

2 Aghababa [124] 91 2015 Modified PSO -
IAE
ISE

ITSE
- Five-bar linkage robot Dynamic response

3 Vanchinathan and
Valluvan [125] 75 2018 BA - - - Sensor-less BLDC Motor Speed

4 Khan et al. [126] 70 2019 SSO - ITAE 0.004195 Automatic voltage regulator
system Voltage

5 Suri babu and
Chiranjeevi [127] 68 2016 GA

ACO 5 ITAE - Automatic voltage regulator
(AVR) system Voltage

6 Vanchinathan and
Selvaganesan [128] 65 2021 ABC -

IAE
ITAE
ISE

0.008
0.002
0.008

Brushless DC motor Speed

7 Guhaet al. [129] 49 2020 EO - ISE 0.70112 × 10−4 Load frequency control of
power system Frequency

8 Bouakkaz et al. [130] 46 2020 PSO 5 ISE - PV energy generation systems Cell’s output power

9 Ghamar et al. [131] 26 2021 ALO 5 - - Buck converter Voltage

10 Jaiswal et al. [132] 13 2020 GA 5 IAE 0.098 Conical tank (nonlinear)
system Magnitude

* The number of citations listed in this table was last updated on 5 June 2023.
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Table 10. Data of highly cited and recent papers that used MHA in the optimization of fractional-order fuzzy controllers.

No. Ref * Cited by Fuzzy Type Year Optimizer # of Optimal
Variables Objective Function Value Plant Controlled Variable

1 Karahan [133] 23 Type-1 2021 CS - ITSE 0.000052 Molten salt reactors Power control

2 Debidasi and
Panda [134] 21 Type-1 2021 MSSA -

Frequency variation
plus control signal

output
4.0846 Hybrid Power System

with Electric Vehicle Frequency

3 Nayak et al. [135] 14 Type-1 2021 SFO 8 ITSE 0.0091

Solar-wind integrated
power system with
hydrogen aqua
equalizer-fuel cell
unit

Frequency

4 Prusty et al. [136] 8 Type-2 2022 IMSA 8 ISE 0.0224 Microgrid Frequency

5 Patel and Shah
[137] 7 Type-2 2022 FPA 6 close loop error 6.723 × 10−1 Nonlinear uncertain

level control systems Response

6 Bennaoui et al.
[138] 7 Type-1 2020 MFO 5 IAE 0.1691 Dc-dc boost converter Voltage

7 Kalyan [139] 5 Type-1 2022 SOA 5 ISE 5.2 × 10–3
Multi-Area Diverse
Source System with
Realistic Constraints

Load frequency
control

8 Sahoo et al. [140] 5 Type-2 2020 CHHO 8 ITAE 2.33 × 10−2 Power system
Frequency deviation
and Deviance in
tie-line power

9 Ghaleb et al. [141] 0 Type-1 2023
SSA

(Social
Spider)

5
Rise Time, Settling
Time, Peak Time,

Peak value
- Inverted pendulum Angle

* The number of citations listed in this table was last updated on 5 June 2023.
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In terms of the MHA and based on the 82 relevant papers, the PSO algorithm is the
most preferable optimizer. This is because of its simplicity and acceptable accuracy. By
referring to Figure 15, PSO accommodates almost 25% of the works that use MHA to opti-
mize FO controllers. Despite that the ChASO has a high citation record with 196 citations,
the PSO is better in terms of the number of published papers.

Regardless of the application type, the objective function of ITAE appears to be the
best formula to optimize the parameters of the controllers, as seen in Tables 8–10 as it
has been used 11 times out of 27 with a percentage that exceeds 40%. Statistically, the
second nominated objected function is the ISE, followed by IAE, then the ITSE, which have
been used 7, 5, and 4 times out of 27. Despite that the ITSE gained less attraction to the
researchers, it produced the lowest cost function value of 0.000052. The second-best cost
function value of 0.002 was obtained by the ITAE. However, the third and fourth ranks
were for the IAE and ISE that produced the same cost function value of 0.08.

It can be noticed that the use of ITSE produces the most accurate values with the lowest
cost function, but it consumes a lot of memory due to the summation of squared errors over
the simulation time. On the other hand, the ITAE can be considered the best nominated
cost function as it uses less memory and at the same time produces very acceptable results.

In conclusion, for researchers who are interested in using the MHA in optimizing
FOC, it is recommended to use the configuration illustrated in Figure 10 regardless of the
type of controller, optimizer, or objective function. The ITAE introduced in Equation (16)
is the best nominated cost function. Furthermore, the PSO is the best attractive optimizer
according to the resulting statistical data. This is because of its simplicity and how easy it is
to implement its mechanism.

7. Conclusions

The use of metaheuristics techniques has been proven to be very effective in the
optimization of fractional-order controllers. This has urged many researchers to apply such
techniques in the tuning of fractional-order controllers. Therefore, this paper introduces a
recent, systematic, and comprehensive review on the use of MHA in optimizing the gains
and orders of the FOCs.
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The work starts by presenting an introduction of the four popular FOCs such as the
FOPI- FOPID, FO-T1FLC, and FO-T2FLC. This introduction presents the structure and
block diagram of the system when using such controllers. Afterward, an introduction
about the MHAs and their history is presented. The PSO algorithm and its flowchart are
introduced as it is the most popular, simple, and easy-to-use optimizer. In addition, the
popular objective functions and the FO toolboxes are illustrated.

The systematic review is conducted by defining the search keywords and four scientific
databases have been included. These databases are Scopus, Web of Science, Science Direct,
and Google Scholar. The initial identified papers reached 850 papers. These papers
were then filtered and screened using the PRISMA methodology. The final list contains
the 82 papers that are the most appropriate works. The relevant data is then extracted
and tabulated for further discussion. The most popular optimizers and their publication
resources (DOI) are presented to assist researchers in easily access them.

The results showed that the FO-PID controller has garnered the highest level of interest
among researchers compared the others. This can be observed from the significantly larger
number of published papers, as the FO-PID controller is used in 48 articles as opposed
to only 16 and 18 for FO-PI and FO-fuzzy controllers, respectively. In addition, the PSO
occupies around 25% of the work that uses MHA to optimize FO controllers. However, the
ChASO has a high citation record of 196 citations, up to the publication date of this work.
Therefore, the PSO is better in terms of the record of published papers.

In conclusion, the selection of an appropriate algorithm and its parameters is crucial
for obtaining good results. This review paper presented the most popular optimizers used
in recent publications and the way these optimizers can be applied. For researchers who are
interested in using the MHA in optimizing FOC, it is recommended to use the configuration
illustrated in Figure 10 regardless of the type of controller, optimizer, or objective function.
The ITAE introduced in Equation (16) has the best nominated cost function. Furthermore,
the PSO is the most attractive optimizer according to the resulting statistical data. This
is because of its simplicity and how easy it is to implement its mechanism. Therefore,
future research can be conducted to focus on the development of new and more efficient
metaheuristic algorithms for FOC design, as well as the investigation of their performance
in real-world applications. Furthermore, other types of FOCs can also be reviewed.
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